Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):9157–9162. doi: 10.1128/jvi.71.12.9157-9162.1997

A mutation in tomato aspermy cucumovirus that abolishes cell-to-cell movement is maintained to high levels in the viral RNA population by complementation.

I M Moreno 1, J M Malpica 1, E Rodríguez-Cerezo 1, F García-Arenal 1
PMCID: PMC230217  PMID: 9371573

Abstract

The nucleotide substitution C-->A at nucleotide 100 of tomato aspermy cucumovirus (TAV) strain V (V-TAV) RNA segment 3 (RNA3) introduces an ocher stop at the fourth codon of the movement protein open reading frame. Experiments with RNA transcripts from full-length clones showed that this mutation abolished cell-to-cell movement and, thus, infectivity in planta. Heterogeneity analyses on stock V-TAV virion RNA showed that an A at position 100 was present in the molecular population of RNA3 at a frequency of 0.76 and that a C at this position was present at a frequency of 0.24. This result indicates that a fraction of RNA3 molecules complements cell-to-cell movement of movement-defective molecules. It was shown that the mutation C-->A conferred enhanced RNA replication of the defective mutant in tobacco protoplasts. The effect of the mutation on replication was dependent on sequence context, since the same mutation did not affect the replication efficiency in the related TAV strain 1 RNA3. Competition experiments in tobacco protoplasts were done to estimate the fitness during a cell invasion cycle of the movement-defective mutant relative to the wild type (wt). From these data, a lower limit to the degree of complementation of movement-defective molecules by movement-competent ones could be estimated as 0.13. This estimate shows that complementation may play an important role in the determination of genetic structure in RNA genome populations. A further effect of the enhanced replication of the movement-defective mutant was the efficient competition with the wt for the initiation of infection foci in planta.

Full Text

The Full Text of this article is available as a PDF (372.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bangham C. R., Kirkwood T. B. Defective interfering particles: effects in modulating virus growth and persistence. Virology. 1990 Dec;179(2):821–826. doi: 10.1016/0042-6822(90)90150-p. [DOI] [PubMed] [Google Scholar]
  2. Bernal J. J., Moriones E., García-Arenal F. Evolutionary relationships in the cucumoviruses: nucleotide sequence of tomato aspermy virus RNA 1. J Gen Virol. 1991 Sep;72(Pt 9):2191–2195. doi: 10.1099/0022-1317-72-9-2191. [DOI] [PubMed] [Google Scholar]
  3. Boccard F., Baulcombe D. Mutational analysis of cis-acting sequences and gene function in RNA3 of cucumber mosaic virus. Virology. 1993 Apr;193(2):563–578. doi: 10.1006/viro.1993.1165. [DOI] [PubMed] [Google Scholar]
  4. Chao L. Fitness of RNA virus decreased by Muller's ratchet. Nature. 1990 Nov 29;348(6300):454–455. doi: 10.1038/348454a0. [DOI] [PubMed] [Google Scholar]
  5. Drake J. W. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4171–4175. doi: 10.1073/pnas.90.9.4171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duarte E., Clarke D., Moya A., Domingo E., Holland J. Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6015–6019. doi: 10.1073/pnas.89.13.6015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Habili N., Francki R. I. Comparative studies on tomato aspermy and cucumber mosaic viruses. I. Physical and chemical properties. Virology. 1974 Feb;57(2):392–401. doi: 10.1016/0042-6822(74)90179-2. [DOI] [PubMed] [Google Scholar]
  8. Holland J. J., de la Torre J. C., Clarke D. K., Duarte E. Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. J Virol. 1991 Jun;65(6):2960–2967. doi: 10.1128/jvi.65.6.2960-2967.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kaplan I. B., Shintaku M. H., Li Q., Zhang L., Marsh L. E., Palukaitis P. Complementation of virus movement in transgenic tobacco expressing the cucumber mosaic virus 3a gene. Virology. 1995 May 10;209(1):188–199. doi: 10.1006/viro.1995.1242. [DOI] [PubMed] [Google Scholar]
  10. Kirkwood T. B., Bangham C. R. Cycles, chaos, and evolution in virus cultures: a model of defective interfering particles. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8685–8689. doi: 10.1073/pnas.91.18.8685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  12. Marsh L. E., Hall T. C. Evidence implicating a tRNA heritage for the promoters of positive-strand RNA synthesis in brome mosaic and related viruses. Cold Spring Harb Symp Quant Biol. 1987;52:331–341. doi: 10.1101/sqb.1987.052.01.038. [DOI] [PubMed] [Google Scholar]
  13. Marsh L. E., Pogue G. P., Hall T. C. Similarities among plant virus (+) and (-) RNA termini imply a common ancestry with promoters of eukaryotic tRNAs. Virology. 1989 Oct;172(2):415–427. doi: 10.1016/0042-6822(89)90184-0. [DOI] [PubMed] [Google Scholar]
  14. Mayo M. A., Ziegler-Graff V. Molecular biology of luteoviruses. Adv Virus Res. 1996;46:413–460. doi: 10.1016/s0065-3527(08)60077-9. [DOI] [PubMed] [Google Scholar]
  15. Meyers G., Thiel H. J. Molecular characterization of pestiviruses. Adv Virus Res. 1996;47:53–118. doi: 10.1016/s0065-3527(08)60734-4. [DOI] [PubMed] [Google Scholar]
  16. Moreno I. M., Bernal J. J., García de Blas B., Rodriguez-Cerezo E., García-Arenal F. The expression level of the 3a movement protein determines differences in severity of symptoms between two strains of tomato aspermy cucumovirus. Mol Plant Microbe Interact. 1997 Mar;10(2):171–179. doi: 10.1094/MPMI.1997.10.2.171. [DOI] [PubMed] [Google Scholar]
  17. Moriones E., Roossinck M. J., García-Arenal F. Nucleotide sequence of tomato aspermy virus RNA 2. J Gen Virol. 1991 Apr;72(Pt 4):779–783. doi: 10.1099/0022-1317-72-4-779. [DOI] [PubMed] [Google Scholar]
  18. Novella I. S., Elena S. F., Moya A., Domingo E., Holland J. J. Size of genetic bottlenecks leading to virus fitness loss is determined by mean initial population fitness. J Virol. 1995 May;69(5):2869–2872. doi: 10.1128/jvi.69.5.2869-2872.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Palukaitis P., Roossinck M. J., Dietzgen R. G., Francki R. I. Cucumber mosaic virus. Adv Virus Res. 1992;41:281–348. doi: 10.1016/s0065-3527(08)60039-1. [DOI] [PubMed] [Google Scholar]
  20. Roux L., Simon A. E., Holland J. J. Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Adv Virus Res. 1991;40:181–211. doi: 10.1016/S0065-3527(08)60279-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Suzuki M., Kuwata S., Kataoka J., Masuta C., Nitta N., Takanami Y. Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology. 1991 Jul;183(1):106–113. doi: 10.1016/0042-6822(91)90123-s. [DOI] [PubMed] [Google Scholar]
  22. Taliansky M. E., García-Arenal F. Role of cucumovirus capsid protein in long-distance movement within the infected plant. J Virol. 1995 Feb;69(2):916–922. doi: 10.1128/jvi.69.2.916-922.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. White K. A., Morris T. J. Enhanced competitiveness of tomato bushy stunt virus defective interfering RNAs by segment duplication or nucleotide insertion. J Virol. 1994 Sep;68(9):6092–6096. doi: 10.1128/jvi.68.9.6092-6096.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. White K. A., Morris T. J. Nonhomologous RNA recombination in tombusviruses: generation and evolution of defective interfering RNAs by stepwise deletions. J Virol. 1994 Jan;68(1):14–24. doi: 10.1128/jvi.68.1.14-24.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yuan T. T., Faruqi A., Shih J. W., Shih C. The mechanism of natural occurrence of two closely linked HBV precore predominant mutations. Virology. 1995 Aug 1;211(1):144–156. doi: 10.1006/viro.1995.1387. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES