Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):9163–9169. doi: 10.1128/jvi.71.12.9163-9169.1997

Repression of retrovirus-mediated transgene expression by interferons: implications for gene therapy.

S Ghazizadeh 1, J M Carroll 1, L B Taichman 1
PMCID: PMC230218  PMID: 9371574

Abstract

Retrovirus-mediated gene transfer is commonly used in gene therapy protocols and has the potential to provide long-term expression of the transgene. Although expression of a retrovirus-delivered transgene is satisfactory in cultured cells, it has been difficult to achieve consistent and high-level expression in vivo. In this investigation, we explored the possibility of modulating transgene expression by host-derived cytokines. Normal human keratinocytes and dermal fibroblasts were transduced with recombinant retroviruses expressing a reporter gene (lacZ). Treatment of transduced cells with a proinflammatory cytokine, gamma interferon (IFN-gamma), significantly reduced lacZ expression to less than 25% of that of nontreated cells. The inhibition was concentration dependent (peak at 5 ng/ml) and time dependent (maximal at 16 h for transcript and 24 h for protein); expression remained repressed in the continued presence of IFN-gamma but returned to normal levels 24 h after IFN-gamma withdrawal. The decrease in beta-galactosidase activity appeared to result from decrease in steady-state lacZ mRNA levels. Inhibitors of transcription and translation blocked IFN-gamma-induced repression, suggesting involvement of newly synthesized protein intermediates. Similar results were obtained by treatment of transduced cells with IFN-alpha but not with other proinflammatory cytokines, including tumor necrosis factor alpha, interleukin-2 (IL-1), IL-4, and granulocyte colony-stimulating factor. Although the level of lacZ mRNA was reduced by >70% following IFN treatment, the rate of lacZ transcription was not significantly different from that for nontreated cells. These results suggest that IFN-mediated regulation of transgene expression is at a posttranscriptional level. Interestingly, IFN-gamma also suppressed transgene expression driven by a cellular promoter (involucrin) inserted in an internal position in the retroviral vector. The presence of the overlapping 3' untranslated regions in transcripts initiated from the internal promoter and the long terminal repeat is suggestive of a posttranscriptional regulation, likely at the level of RNA stabilization. These results provide direct evidence for modulatory effects of IFNs on retrovirus-mediated transgene expression and suggest that gene therapy results may be altered by host inflammatory responses.

Full Text

The Full Text of this article is available as a PDF (700.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Besançon F., Przewlocki G., Baró I., Hongre A. S., Escande D., Edelman A. Interferon-gamma downregulates CFTR gene expression in epithelial cells. Am J Physiol. 1994 Nov;267(5 Pt 1):C1398–C1404. doi: 10.1152/ajpcell.1994.267.5.C1398. [DOI] [PubMed] [Google Scholar]
  2. Carroll J. M., Albers K. M., Garlick J. A., Harrington R., Taichman L. B. Tissue- and stratum-specific expression of the human involucrin promoter in transgenic mice. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10270–10274. doi: 10.1073/pnas.90.21.10270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Challita P. M., Kohn D. B. Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2567–2571. doi: 10.1073/pnas.91.7.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choate K. A., Medalie D. A., Morgan J. R., Khavari P. A. Corrective gene transfer in the human skin disorder lamellar ichthyosis. Nat Med. 1996 Nov;2(11):1263–1267. doi: 10.1038/nm1196-1263. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Collins T., Lapierre L. A., Fiers W., Strominger J. L., Pober J. S. Recombinant human tumor necrosis factor increases mRNA levels and surface expression of HLA-A,B antigens in vascular endothelial cells and dermal fibroblasts in vitro. Proc Natl Acad Sci U S A. 1986 Jan;83(2):446–450. doi: 10.1073/pnas.83.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cullen B. R., Lomedico P. T., Ju G. Transcriptional interference in avian retroviruses--implications for the promoter insertion model of leukaemogenesis. Nature. 1984 Jan 19;307(5948):241–245. doi: 10.1038/307241a0. [DOI] [PubMed] [Google Scholar]
  8. Dani C., Mechti N., Piechaczyk M., Lebleu B., Jeanteur P., Blanchard J. M. Increased rate of degradation of c-myc mRNA in interferon-treated Daudi cells. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4896–4899. doi: 10.1073/pnas.82.15.4896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Danos O., Mulligan R. C. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6460–6464. doi: 10.1073/pnas.85.17.6460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Darnell J. E., Jr, Kerr I. M., Stark G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994 Jun 3;264(5164):1415–1421. doi: 10.1126/science.8197455. [DOI] [PubMed] [Google Scholar]
  11. David M. Transcription factors in interferon signaling. Pharmacol Ther. 1995 Feb;65(2):149–161. doi: 10.1016/0163-7258(94)00050-d. [DOI] [PubMed] [Google Scholar]
  12. Emerman M., Temin H. M. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell. 1984 Dec;39(3 Pt 2):449–467. [PubMed] [Google Scholar]
  13. Emilie D., Maillot M. C., Nicolas J. F., Fior R., Galanaud P. Antagonistic effect of interferon-gamma on tat-induced transactivation of HIV long terminal repeat. J Biol Chem. 1992 Oct 15;267(29):20565–20570. [PubMed] [Google Scholar]
  14. Fenjves E. S., Yao S. N., Kurachi K., Taichman L. B. Loss of expression of a retrovirus-transduced gene in human keratinocytes. J Invest Dermatol. 1996 Mar;106(3):576–578. doi: 10.1111/1523-1747.ep12344976. [DOI] [PubMed] [Google Scholar]
  15. Fujita T., Reis L. F., Watanabe N., Kimura Y., Taniguchi T., Vilcek J. Induction of the transcription factor IRF-1 and interferon-beta mRNAs by cytokines and activators of second-messenger pathways. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9936–9940. doi: 10.1073/pnas.86.24.9936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gerrard A. J., Hudson D. L., Brownlee G. G., Watt F. M. Towards gene therapy for haemophilia B using primary human keratinocytes. Nat Genet. 1993 Feb;3(2):180–183. doi: 10.1038/ng0293-180. [DOI] [PubMed] [Google Scholar]
  17. Gribaudo G., Ravaglia S., Caliendo A., Cavallo R., Gariglio M., Martinotti M. G., Landolfo S. Interferons inhibit onset of murine cytomegalovirus immediate-early gene transcription. Virology. 1993 Nov;197(1):303–311. doi: 10.1006/viro.1993.1591. [DOI] [PubMed] [Google Scholar]
  18. Guidotti L. G., Ishikawa T., Hobbs M. V., Matzke B., Schreiber R., Chisari F. V. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity. 1996 Jan;4(1):25–36. doi: 10.1016/s1074-7613(00)80295-2. [DOI] [PubMed] [Google Scholar]
  19. Harms J. S., Splitter G. A. Interferon-gamma inhibits transgene expression driven by SV40 or CMV promoters but augments expression driven by the mammalian MHC I promoter. Hum Gene Ther. 1995 Oct;6(10):1291–1297. doi: 10.1089/hum.1995.6.10-1291. [DOI] [PubMed] [Google Scholar]
  20. Hertle M. D., Jones P. H., Groves R. W., Hudson D. L., Watt F. M. Integrin expression by human epidermal keratinocytes can be modulated by interferon-gamma, transforming growth factor-beta, tumor necrosis factor-alpha, and culture on a dermal equivalent. J Invest Dermatol. 1995 Feb;104(2):260–265. doi: 10.1111/1523-1747.ep12612801. [DOI] [PubMed] [Google Scholar]
  21. Hoeben R. C., Migchielsen A. A., van der Jagt R. C., van Ormondt H., van der Eb A. J. Inactivation of the Moloney murine leukemia virus long terminal repeat in murine fibroblast cell lines is associated with methylation and dependent on its chromosomal position. J Virol. 1991 Feb;65(2):904–912. doi: 10.1128/jvi.65.2.904-912.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Horvath C. M., Darnell J. E., Jr The antiviral state induced by alpha interferon and gamma interferon requires transcriptionally active Stat1 protein. J Virol. 1996 Jan;70(1):647–650. doi: 10.1128/jvi.70.1.647-650.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jackson R. J. Cytoplasmic regulation of mRNA function: the importance of the 3' untranslated region. Cell. 1993 Jul 16;74(1):9–14. doi: 10.1016/0092-8674(93)90290-7. [DOI] [PubMed] [Google Scholar]
  24. Jaffee E. M., Dranoff G., Cohen L. K., Hauda K. M., Clift S., Marshall F. F., Mulligan R. C., Pardoll D. M. High efficiency gene transfer into primary human tumor explants without cell selection. Cancer Res. 1993 May 15;53(10 Suppl):2221–2226. [PubMed] [Google Scholar]
  25. Kaleko M., Garcia J. V., Miller A. D. Persistent gene expression after retroviral gene transfer into liver cells in vivo. Hum Gene Ther. 1991 Spring;2(1):27–32. doi: 10.1089/hum.1991.2.1-27. [DOI] [PubMed] [Google Scholar]
  26. Kay M. A., Baley P., Rothenberg S., Leland F., Fleming L., Ponder K. P., Liu T., Finegold M., Darlington G., Pokorny W. Expression of human alpha 1-antitrypsin in dogs after autologous transplantation of retroviral transduced hepatocytes. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):89–93. doi: 10.1073/pnas.89.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kerr I. M., Stark G. R. The antiviral effects of the interferons and their inhibition. J Interferon Res. 1992 Aug;12(4):237–240. doi: 10.1089/jir.1992.12.237. [DOI] [PubMed] [Google Scholar]
  28. Markowitz D., Goff S., Bank A. Construction and use of a safe and efficient amphotropic packaging cell line. Virology. 1988 Dec;167(2):400–406. [PubMed] [Google Scholar]
  29. McCune S. L., Townes T. M. Retroviral vector sequences inhibit human beta-globin gene expression in transgenic mice. Nucleic Acids Res. 1994 Oct 25;22(21):4477–4481. doi: 10.1093/nar/22.21.4477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mestan J., Digel W., Mittnacht S., Hillen H., Blohm D., Möller A., Jacobsen H., Kirchner H. Antiviral effects of recombinant tumour necrosis factor in vitro. 1986 Oct 30-Nov 5Nature. 323(6091):816–819. doi: 10.1038/323816a0. [DOI] [PubMed] [Google Scholar]
  32. Miller A. D. Retroviral vectors. Curr Top Microbiol Immunol. 1992;158:1–24. doi: 10.1007/978-3-642-75608-5_1. [DOI] [PubMed] [Google Scholar]
  33. Miyamoto M., Fujita T., Kimura Y., Maruyama M., Harada H., Sudo Y., Miyata T., Taniguchi T. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene regulatory elements. Cell. 1988 Sep 9;54(6):903–913. doi: 10.1016/s0092-8674(88)91307-4. [DOI] [PubMed] [Google Scholar]
  34. Morgenstern J. P., Land H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990 Jun 25;18(12):3587–3596. doi: 10.1093/nar/18.12.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ng R. L., Woodward B., Bevan S., Green C., Martin R. Retroviral marking identifies grafted autologous keratinocytes in porcine wounds receiving cultured epithelium. J Invest Dermatol. 1997 Apr;108(4):457–462. doi: 10.1111/1523-1747.ep12289716. [DOI] [PubMed] [Google Scholar]
  36. Nilsen T. W., Maroney P. A., Baglioni C. Synthesis of (2'-5')oligoadenylate and activation of an endoribonuclease in interferon-treated HeLa cells infected with reovirus. J Virol. 1982 Jun;42(3):1039–1045. doi: 10.1128/jvi.42.3.1039-1045.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Palmer T. D., Rosman G. J., Osborne W. R., Miller A. D. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1330–1334. doi: 10.1073/pnas.88.4.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Palmer T. D., Thompson A. R., Miller A. D. Production of human factor IX in animals by genetically modified skin fibroblasts: potential therapy for hemophilia B. Blood. 1989 Feb;73(2):438–445. [PubMed] [Google Scholar]
  39. Radzioch D., Varesio L. c-fos mRNA expression in macrophages is downregulated by interferon-gamma at the posttranscriptional level. Mol Cell Biol. 1991 May;11(5):2718–2722. doi: 10.1128/mcb.11.5.2718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rheinwald J. G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975 Nov;6(3):331–343. doi: 10.1016/s0092-8674(75)80001-8. [DOI] [PubMed] [Google Scholar]
  41. Richards C. A., Huber B. E. Generation of a transgenic model for retrovirus-mediated gene therapy for hepatocellular carcinoma is thwarted by the lack of transgene expression. Hum Gene Ther. 1993 Apr;4(2):143–150. doi: 10.1089/hum.1993.4.2-143. [DOI] [PubMed] [Google Scholar]
  42. Rivière I., Brose K., Mulligan R. C. Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6733–6737. doi: 10.1073/pnas.92.15.6733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Samuel C. E. Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology. 1991 Jul;183(1):1–11. doi: 10.1016/0042-6822(91)90112-o. [DOI] [PubMed] [Google Scholar]
  44. Scharfmann R., Axelrod J. H., Verma I. M. Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4626–4630. doi: 10.1073/pnas.88.11.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stead R. B., Kwok W. W., Storb R., Miller A. D. Canine model for gene therapy: inefficient gene expression in dogs reconstituted with autologous marrow infected with retroviral vectors. Blood. 1988 Mar;71(3):742–747. [PubMed] [Google Scholar]
  46. Stockschläder M. A., Schuening F. G., Graham T. C., Storb R. Transplantation of retrovirus-transduced canine keratinocytes expressing the beta-galactosidase gene. Gene Ther. 1994 Sep;1(5):317–322. [PubMed] [Google Scholar]
  47. Strauss M. Liver-directed gene therapy: prospects and problems. Gene Ther. 1994 May;1(3):156–164. [PubMed] [Google Scholar]
  48. Tsui L. V., Guidotti L. G., Ishikawa T., Chisari F. V. Posttranscriptional clearance of hepatitis B virus RNA by cytotoxic T lymphocyte-activated hepatocytes. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12398–12402. doi: 10.1073/pnas.92.26.12398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wu Y. J., Parker L. M., Binder N. E., Beckett M. A., Sinard J. H., Griffiths C. T., Rheinwald J. G. The mesothelial keratins: a new family of cytoskeletal proteins identified in cultured mesothelial cells and nonkeratinizing epithelia. Cell. 1982 Dec;31(3 Pt 2):693–703. doi: 10.1016/0092-8674(82)90324-5. [DOI] [PubMed] [Google Scholar]
  50. Yee J. K., Moores J. C., Jolly D. J., Wolff J. A., Respess J. G., Friedmann T. Gene expression from transcriptionally disabled retroviral vectors. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5197–5201. doi: 10.1073/pnas.84.15.5197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES