Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):9198–9205. doi: 10.1128/jvi.71.12.9198-9205.1997

The V3-directed immune response in natural human immunodeficiency virus type 1 infection is predominantly directed against a variable, discontinuous epitope presented by the gp120 V3 domain.

M Schreiber 1, C Wachsmuth 1, H Müller 1, S Odemuyiwa 1, H Schmitz 1, S Meyer 1, B Meyer 1, J Schneider-Mergener 1
PMCID: PMC230222  PMID: 9371578

Abstract

The specific binding of antibodies to the V3 loop in sera from human immunodeficiency type 1 (HIV-1)-infected individuals was investigated. Different V3 structures were analyzed as full-length loops or by pepscan. Our data show that on full-length V3 loops, both variable regions on either side of the tip of the loop (GPGRAF) contribute to a common epitope for type-specific antibodies. Type-specific antibodies bound strongly and at high titers to native V3 loops but negligibly once the loop was denatured. In contrast to the type-specific, discontinuous epitope, the linear, conserved epitopes presented by the full-length V3 loop, the tip, the amino-terminal base, and the carboxy-terminal base were not accessible to serum antibody. When the V3 sequences were analyzed with linear peptides, antibodies bound preferentially to peptides containing the conserved GPGRAF sequence. Thus, two different specificities of V3-directed antibodies were detected in patient sera. Unlike group-specific antibodies directed against GPGRAF peptides, lack of type-specific antibodies directed against the discontinuous epitope was correlated with viral escape from autologous neutralization. Our data suggest that the full-length conformation of the V3 loop is accessible predominantly to highly type-specific antibodies present in sera from HIV-1-infected individuals. These antibodies are directed against discontinuous V3 epitopes, not against conserved linear V3 targets. The implications of these findings for viral escape and blockade of infection with V3-based vaccines are discussed.

Full Text

The Full Text of this article is available as a PDF (771.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., Berger E. A. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270):1955–1958. doi: 10.1126/science.272.5270.1955. [DOI] [PubMed] [Google Scholar]
  2. Carrow E. W., Vujcic L. K., Glass W. L., Seamon K. B., Rastogi S. C., Hendry R. M., Boulos R., Nzila N., Quinnan G. V., Jr High prevalence of antibodies to the gp120 V3 region principal neutralizing determinant of HIV-1MN in sera from Africa and the Americas. AIDS Res Hum Retroviruses. 1991 Oct;7(10):831–838. doi: 10.1089/aid.1991.7.831. [DOI] [PubMed] [Google Scholar]
  3. Catasti P., Fontenot J. D., Bradbury E. M., Gupta G. Local and global structural properties of the HIV-MN V3 loop. J Biol Chem. 1995 Feb 3;270(5):2224–2232. doi: 10.1074/jbc.270.5.2224. [DOI] [PubMed] [Google Scholar]
  4. Chandrasekhar K., Profy A. T., Dyson H. J. Solution conformational preferences of immunogenic peptides derived from the principal neutralizing determinant of the HIV-1 envelope glycoprotein gp120. Biochemistry. 1991 Sep 24;30(38):9187–9194. doi: 10.1021/bi00102a009. [DOI] [PubMed] [Google Scholar]
  5. Cocchi F., DeVico A. L., Garzino-Demo A., Cara A., Gallo R. C., Lusso P. The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat Med. 1996 Nov;2(11):1244–1247. doi: 10.1038/nm1196-1244. [DOI] [PubMed] [Google Scholar]
  6. Cohen J. Jitters jeopardize AIDS vaccine trials. Science. 1993 Nov 12;262(5136):980–981. doi: 10.1126/science.8235635. [DOI] [PubMed] [Google Scholar]
  7. Emini E. A., Nara P. L., Schleif W. A., Lewis J. A., Davide J. P., Lee D. R., Kessler J., Conley S., Matsushita S., Putney S. D. Antibody-mediated in vitro neutralization of human immunodeficiency virus type 1 abolishes infectivity for chimpanzees. J Virol. 1990 Aug;64(8):3674–3678. doi: 10.1128/jvi.64.8.3674-3678.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emini E. A., Schleif W. A., Nunberg J. H., Conley A. J., Eda Y., Tokiyoshi S., Putney S. D., Matsushita S., Cobb K. E., Jett C. M. Prevention of HIV-1 infection in chimpanzees by gp120 V3 domain-specific monoclonal antibody. Nature. 1992 Feb 20;355(6362):728–730. doi: 10.1038/355728a0. [DOI] [PubMed] [Google Scholar]
  9. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996 May 10;272(5263):872–877. doi: 10.1126/science.272.5263.872. [DOI] [PubMed] [Google Scholar]
  10. Ghiara J. B., Stura E. A., Stanfield R. L., Profy A. T., Wilson I. A. Crystal structure of the principal neutralization site of HIV-1. Science. 1994 Apr 1;264(5155):82–85. doi: 10.1126/science.7511253. [DOI] [PubMed] [Google Scholar]
  11. Gorny M. K., Conley A. J., Karwowska S., Buchbinder A., Xu J. Y., Emini E. A., Koenig S., Zolla-Pazner S. Neutralization of diverse human immunodeficiency virus type 1 variants by an anti-V3 human monoclonal antibody. J Virol. 1992 Dec;66(12):7538–7542. doi: 10.1128/jvi.66.12.7538-7542.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gupta G., Anantharamaiah G. M., Scott D. R., Eldridge J. H., Myers G. Solution structure of the V3 loop of a Thailand HIV isolate. J Biomol Struct Dyn. 1993 Oct;11(2):345–366. doi: 10.1080/07391102.1993.10508731. [DOI] [PubMed] [Google Scholar]
  13. Hogervorst E., Jurriaans S., de Wolf F., van Wijk A., Wiersma A., Valk M., Roos M., van Gemen B., Coutinho R., Miedema F. Predictors for non- and slow progression in human immunodeficiency virus (HIV) type 1 infection: low viral RNA copy numbers in serum and maintenance of high HIV-1 p24-specific but not V3-specific antibody levels. J Infect Dis. 1995 Apr;171(4):811–821. doi: 10.1093/infdis/171.4.811. [DOI] [PubMed] [Google Scholar]
  14. Holmes E. C., Zhang L. Q., Robertson P., Cleland A., Harvey E., Simmonds P., Leigh Brown A. J. The molecular epidemiology of human immunodeficiency virus type 1 in Edinburgh. J Infect Dis. 1995 Jan;171(1):45–53. doi: 10.1093/infdis/171.1.45. [DOI] [PubMed] [Google Scholar]
  15. Kliks S. C., Shioda T., Haigwood N. L., Levy J. A. V3 variability can influence the ability of an antibody to neutralize or enhance infection by diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11518–11522. doi: 10.1073/pnas.90.24.11518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kostrikis L. G., Cao Y., Ngai H., Moore J. P., Ho D. D. Quantitative analysis of serum neutralization of human immunodeficiency virus type 1 from subtypes A, B, C, D, E, F, and I: lack of direct correlation between neutralization serotypes and genetic subtypes and evidence for prevalent serum-dependent infectivity enhancement. J Virol. 1996 Jan;70(1):445–458. doi: 10.1128/jvi.70.1.445-458.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LaRosa G. J., Davide J. P., Weinhold K., Waterbury J. A., Profy A. T., Lewis J. A., Langlois A. J., Dreesman G. R., Boswell R. N., Shadduck P. Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science. 1990 Aug 24;249(4971):932–935. doi: 10.1126/science.2392685. [DOI] [PubMed] [Google Scholar]
  18. Laman J. D., Schellekens M. M., Lewis G. K., Moore J. P., Matthews T. J., Langedijk J. P., Meloen R. H., Boersma W. J., Claassen E. A hidden region in the third variable domain of HIV-1 IIIB gp120 identified by a monoclonal antibody. AIDS Res Hum Retroviruses. 1993 Jul;9(7):605–612. doi: 10.1089/aid.1993.9.605. [DOI] [PubMed] [Google Scholar]
  19. Lu W., Shih J. W., Tourani J. M., Eme D., Alter H. J., Andrieu J. M. Lack of isolate-specific neutralizing activity is correlated with an increased viral burden in rapidly progressing HIV-1-infected patients. AIDS. 1993 Nov;7 (Suppl 2):S91–S99. doi: 10.1097/00002030-199311002-00018. [DOI] [PubMed] [Google Scholar]
  20. Matthews T. J. Dilemma of neutralization resistance of HIV-1 field isolates and vaccine development. AIDS Res Hum Retroviruses. 1994 Jun;10(6):631–632. doi: 10.1089/aid.1994.10.631. [DOI] [PubMed] [Google Scholar]
  21. McKeating J. A., Gow J., Goudsmit J., Pearl L. H., Mulder C., Weiss R. A. Characterization of HIV-1 neutralization escape mutants. AIDS. 1989 Dec;3(12):777–784. doi: 10.1097/00002030-198912000-00001. [DOI] [PubMed] [Google Scholar]
  22. McKnight A., Weiss R. A., Shotton C., Takeuchi Y., Hoshino H., Clapham P. R. Change in tropism upon immune escape by human immunodeficiency virus. J Virol. 1995 May;69(5):3167–3170. doi: 10.1128/jvi.69.5.3167-3170.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moore J. P., Cao Y., Qing L., Sattentau Q. J., Pyati J., Koduri R., Robinson J., Barbas C. F., 3rd, Burton D. R., Ho D. D. Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J Virol. 1995 Jan;69(1):101–109. doi: 10.1128/jvi.69.1.101-109.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moore J. P., Ho D. D. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J Virol. 1993 Feb;67(2):863–875. doi: 10.1128/jvi.67.2.863-875.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moore J. P., Sattentau Q. J., Wyatt R., Sodroski J. Probing the structure of the human immunodeficiency virus surface glycoprotein gp120 with a panel of monoclonal antibodies. J Virol. 1994 Jan;68(1):469–484. doi: 10.1128/jvi.68.1.469-484.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moore J. P., Trkola A., Korber B., Boots L. J., Kessler J. A., 2nd, McCutchan F. E., Mascola J., Ho D. D., Robinson J., Conley A. J. A human monoclonal antibody to a complex epitope in the V3 region of gp120 of human immunodeficiency virus type 1 has broad reactivity within and outside clade B. J Virol. 1995 Jan;69(1):122–130. doi: 10.1128/jvi.69.1.122-130.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pincus S. H., Messer K. G., Nara P. L., Blattner W. A., Colclough G., Reitz M. Temporal analysis of the antibody response to HIV envelope protein in HIV-infected laboratory workers. J Clin Invest. 1994 Jun;93(6):2505–2513. doi: 10.1172/JCI117260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Profy A. T., Salinas P. A., Eckler L. I., Dunlop N. M., Nara P. L., Putney S. D. Epitopes recognized by the neutralizing antibodies of an HIV-1-infected individual. J Immunol. 1990 Jun 15;144(12):4641–4647. [PubMed] [Google Scholar]
  29. Rini J. M., Stanfield R. L., Stura E. A., Salinas P. A., Profy A. T., Wilson I. A. Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50.1, in complex with its V3 loop peptide antigen. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6325–6329. doi: 10.1073/pnas.90.13.6325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rusche J. R., Javaherian K., McDanal C., Petro J., Lynn D. L., Grimaila R., Langlois A., Gallo R. C., Arthur L. O., Fischinger P. J. Antibodies that inhibit fusion of human immunodeficiency virus-infected cells bind a 24-amino acid sequence of the viral envelope, gp120. Proc Natl Acad Sci U S A. 1988 May;85(9):3198–3202. doi: 10.1073/pnas.85.9.3198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schreiber M., Müller H., Wachsmuth C., Laue T., Hufert F. T., Van Laer M. D., Schmitz H. Escape of HIV-1 is associated with lack of V3 domain-specific antibodies in vivo. Clin Exp Immunol. 1997 Jan;107(1):15–20. doi: 10.1046/j.1365-2249.1996.d01-909.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schreiber M., Petersen H., Wachsmuth C., Müller H., Hufert F. T., Schmitz H. Antibodies of symptomatic human immunodeficiency virus type 1-infected individuals are directed to the V3 domain of noninfectious and not of infectious virions present in autologous serum. J Virol. 1994 Jun;68(6):3908–3916. doi: 10.1128/jvi.68.6.3908-3916.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schreiber M., Wachsmuth C., Müller H., Hagen C., Schmitz H., van Lunzen J. Loss of antibody reactivity directed against the V3 domain of certain human immunodeficiency virus type 1 variants during disease progression. J Gen Virol. 1996 Oct;77(Pt 10):2403–2414. doi: 10.1099/0022-1317-77-10-2403. [DOI] [PubMed] [Google Scholar]
  34. Smith D. B., Davern K. M., Board P. G., Tiu W. U., Garcia E. G., Mitchell G. F. Mr 26,000 antigen of Schistosoma japonicum recognized by resistant WEHI 129/J mice is a parasite glutathione S-transferase. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8703–8707. doi: 10.1073/pnas.83.22.8703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Spear G. T., Takefman D. M., Sharpe S., Ghassemi M., Zolla-Pazner S. Antibodies to the HIV-1 V3 loop in serum from infected persons contribute a major proportion of immune effector functions including complement activation, antibody binding, and neutralization. Virology. 1994 Nov 1;204(2):609–615. doi: 10.1006/viro.1994.1575. [DOI] [PubMed] [Google Scholar]
  36. Søndergård-Andersen J., Lauritzen E., Lind K., Holm A. Covalently linked peptides for enzyme-linked immunosorbent assay. J Immunol Methods. 1990 Jul 20;131(1):99–104. doi: 10.1016/0022-1759(90)90238-q. [DOI] [PubMed] [Google Scholar]
  37. Trkola A., Dragic T., Arthos J., Binley J. M., Olson W. C., Allaway G. P., Cheng-Mayer C., Robinson J., Maddon P. J., Moore J. P. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature. 1996 Nov 14;384(6605):184–187. doi: 10.1038/384184a0. [DOI] [PubMed] [Google Scholar]
  38. VanCott T. C., Bethke F. R., Burke D. S., Redfield R. R., Birx D. L. Lack of induction of antibodies specific for conserved, discontinuous epitopes of HIV-1 envelope glycoprotein by candidate AIDS vaccines. J Immunol. 1995 Oct 15;155(8):4100–4110. [PubMed] [Google Scholar]
  39. Vancott T. C., Polonis V. R., Loomis L. D., Michael N. L., Nara P. L., Birx D. L. Differential role of V3-specific antibodies in neutralization assays involving primary and laboratory-adapted isolates of HIV type 1. AIDS Res Hum Retroviruses. 1995 Nov;11(11):1379–1391. doi: 10.1089/aid.1995.11.1379. [DOI] [PubMed] [Google Scholar]
  40. Von Gegerfelt A., Albert J., Morfeldt-Månson L., Broliden K., Fenyö E. M. Isolate-specific neutralizing antibodies in patients with progressive HIV-1-related disease. Virology. 1991 Nov;185(1):162–168. doi: 10.1016/0042-6822(91)90764-3. [DOI] [PubMed] [Google Scholar]
  41. Warren R. Q., Anderson S. A., Nkya W. M., Shao J. F., Hendrix C. W., Melcher G. P., Redfield R. R., Kennedy R. C. Examination of sera from human immunodeficiency virus type 1 (HIV-1)-infected individuals for antibodies reactive with peptides corresponding to the principal neutralizing determinant of HIV-1 gp120 and for in vitro neutralizing activity. J Virol. 1992 Sep;66(9):5210–5215. doi: 10.1128/jvi.66.9.5210-5215.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Willey R. L., Ross E. K., Buckler-White A. J., Theodore T. S., Martin M. A. Functional interaction of constant and variable domains of human immunodeficiency virus type 1 gp120. J Virol. 1989 Sep;63(9):3595–3600. doi: 10.1128/jvi.63.9.3595-3600.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wrin T., Crawford L., Sawyer L., Weber P., Sheppard H. W., Hanson C. V. Neutralizing antibody responses to autologous and heterologous isolates of human immunodeficiency virus. J Acquir Immune Defic Syndr. 1994 Mar;7(3):211–219. [PubMed] [Google Scholar]
  44. Wu L., Gerard N. P., Wyatt R., Choe H., Parolin C., Ruffing N., Borsetti A., Cardoso A. A., Desjardin E., Newman W. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature. 1996 Nov 14;384(6605):179–183. doi: 10.1038/384179a0. [DOI] [PubMed] [Google Scholar]
  45. Wyatt R., Sullivan N., Thali M., Repke H., Ho D., Robinson J., Posner M., Sodroski J. Functional and immunologic characterization of human immunodeficiency virus type 1 envelope glycoproteins containing deletions of the major variable regions. J Virol. 1993 Aug;67(8):4557–4565. doi: 10.1128/jvi.67.8.4557-4565.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhang L. Q., MacKenzie P., Cleland A., Holmes E. C., Brown A. J., Simmonds P. Selection for specific sequences in the external envelope protein of human immunodeficiency virus type 1 upon primary infection. J Virol. 1993 Jun;67(6):3345–3356. doi: 10.1128/jvi.67.6.3345-3356.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zwart G., Langedijk H., van der Hoek L., de Jong J. J., Wolfs T. F., Ramautarsing C., Bakker M., de Ronde A., Goudsmit J. Immunodominance and antigenic variation of the principal neutralization domain of HIV-1. Virology. 1991 Apr;181(2):481–489. doi: 10.1016/0042-6822(91)90880-k. [DOI] [PubMed] [Google Scholar]
  48. de Jong J. J., Goudsmit J., Keulen W., Klaver B., Krone W., Tersmette M., de Ronde A. Human immunodeficiency virus type 1 clones chimeric for the envelope V3 domain differ in syncytium formation and replication capacity. J Virol. 1992 Feb;66(2):757–765. doi: 10.1128/jvi.66.2.757-765.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES