Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):9248–9258. doi: 10.1128/jvi.71.12.9248-9258.1997

Mechanisms for virus-induced liver disease: tumor necrosis factor-mediated pathology independent of natural killer and T cells during murine cytomegalovirus infection.

J S Orange 1, T P Salazar-Mather 1, S M Opal 1, C A Biron 1
PMCID: PMC230227  PMID: 9371583

Abstract

The contribution of endogenous NK cells and cytokines to virus-induced liver pathology was evaluated during murine cytomegalovirus infections of mice. In immunocompetent C57BL/6 mice, the virus induced a self-limited liver disease characterized by hepatitis, with focal inflammation, and large grossly visible subcapsular necrotic foci. The inflammatory foci were most numerous and contained the greatest number of cells 3 days after infection; they colocalized with areas of viral antigen expression. The largest number of necrotic foci was found 2 days after infection. Overall hepatic damage, assessed as increased expression of liver enzymes in serum, accompanied the development of inflammatory and necrotic foci. Experiments with neutralizing antibodies demonstrated that although virus-induced tumor necrosis factor (TNF) can have antiviral effects, it also mediated significant liver pathology. TNF was required for development of hepatic necrotic foci and increased levels of liver enzymes in serum but not for increased numbers of inflammatory foci. The necrotic foci and liver enzyme indications of pathology occurred independently of NK and T cells, because mice rendered NK-cell deficient by treatment with antibodies, T- and B-cell-deficient Rag-/- mice, and NK- and T-cell-deficient E26 mice all manifested both parameters of disease. Development of necrotic foci and maximally increased levels of liver enzymes in serum also were TNF dependent in NK-cell-deficient mice. Moreover, in the immunodeficient E26 mice, virus-induced liver disease was progressive, with eventual death of the host, and neutralization of TNF significantly increased longevity. These results establish conditions separating hepatitis from significant liver damage and demonstrate a cytokine-mediated component to viral pathogenesis.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson G. M., Billings R. E. Cytokine toxicity and induction of NO synthase activity in cultured mouse hepatocytes. Toxicol Appl Pharmacol. 1993 Mar;119(1):100–107. doi: 10.1006/taap.1993.1048. [DOI] [PubMed] [Google Scholar]
  2. Ando K., Moriyama T., Guidotti L. G., Wirth S., Schreiber R. D., Schlicht H. J., Huang S. N., Chisari F. V. Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. J Exp Med. 1993 Nov 1;178(5):1541–1554. doi: 10.1084/jem.178.5.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bach N., Theise N. D., Schaffner F. Hepatic histopathology in the acquired immunodeficiency syndrome. Semin Liver Dis. 1992 May;12(2):205–212. doi: 10.1055/s-2007-1007392. [DOI] [PubMed] [Google Scholar]
  4. Bancroft G. J., Shellam G. R., Chalmer J. E. Genetic influences on the augmentation of natural killer (NK) cells during murine cytomegalovirus infection: correlation with patterns of resistance. J Immunol. 1981 Mar;126(3):988–994. [PubMed] [Google Scholar]
  5. Brautigam A. R., Dutko F. J., Olding L. B., Oldstone M. B. Pathogenesis of murine cytomegalovirus infection: the macrophage as a permissive cell for cytomegalovirus infection, replication and latency. J Gen Virol. 1979 Aug;44(2):349–359. doi: 10.1099/0022-1317-44-2-349. [DOI] [PubMed] [Google Scholar]
  6. Bukowski J. F., Woda B. A., Habu S., Okumura K., Welsh R. M. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol. 1983 Sep;131(3):1531–1538. [PubMed] [Google Scholar]
  7. Bukowski J. F., Woda B. A., Welsh R. M. Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J Virol. 1984 Oct;52(1):119–128. doi: 10.1128/jvi.52.1.119-128.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burstin S. J., Brandriss M. W., Schlesinger J. J. Infection of a macrophage-like cell line, P388D1 with reovirus; effects of immune ascitic fluids and monoclonal antibodies on neutralization and on enhancement of viral growth. J Immunol. 1983 Jun;130(6):2915–2919. [PubMed] [Google Scholar]
  9. Cohen J. I., Corey G. R. Cytomegalovirus infection in the normal host. Medicine (Baltimore) 1985 Mar;64(2):100–114. doi: 10.1097/00005792-198503000-00003. [DOI] [PubMed] [Google Scholar]
  10. Dindzans V. J., MacPhee P. J., Fung L. S., Leibowitz J. L., Levy G. A. The immune response to mouse hepatitis virus: expression of monocyte procoagulant activity and plasminogen activator during infection in vivo. J Immunol. 1985 Dec;135(6):4189–4197. [PubMed] [Google Scholar]
  11. Falagas M. E., Snydman D. R. Recurrent cytomegalovirus disease in solid-organ transplant recipients. Transplant Proc. 1995 Oct;27(5 Suppl 1):34–37. [PubMed] [Google Scholar]
  12. Farone A. L., O'Brien P. C., Cox D. C. Tumor necrosis factor-alpha induction by reovirus serotype 3. J Leukoc Biol. 1993 Feb;53(2):133–137. doi: 10.1002/jlb.53.2.133. [DOI] [PubMed] [Google Scholar]
  13. Haagmans B. L., Stals F. S., van der Meide P. H., Bruggeman C. A., Horzinek M. C., Schijns V. E. Tumor necrosis factor alpha promotes replication and pathogenicity of rat cytomegalovirus. J Virol. 1994 Apr;68(4):2297–2304. doi: 10.1128/jvi.68.4.2297-2304.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henson D., Smith R. D., Gehrke J. Non-fatal mouse cytomegalovirus hepatitis. Combined morphologic, virologic and immunologic observations. Am J Pathol. 1966 Nov;49(5):871–888. [PMC free article] [PubMed] [Google Scholar]
  15. Hewett J. A., Jean P. A., Kunkel S. L., Roth R. A. Relationship between tumor necrosis factor-alpha and neutrophils in endotoxin-induced liver injury. Am J Physiol. 1993 Dec;265(6 Pt 1):G1011–G1015. doi: 10.1152/ajpgi.1993.265.6.G1011. [DOI] [PubMed] [Google Scholar]
  16. Horwitz C. A., Henle W., Henle G., Snover D., Rudnick H., Balfour H. H., Jr, Mazur M. H., Watson R., Schwartz B., Muller N. Clinical and laboratory evaluation of cytomegalovirus-induced mononucleosis in previously healthy individuals. Report of 82 cases. Medicine (Baltimore) 1986 Mar;65(2):124–134. doi: 10.1097/00005792-198603000-00005. [DOI] [PubMed] [Google Scholar]
  17. Jacoby R. O., Bhatt P. N. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. II. Pathogenesis. Lab Anim Sci. 1987 Feb;37(1):16–22. [PubMed] [Google Scholar]
  18. Koo G. C., Peppard J. R. Establishment of monoclonal anti-Nk-1.1 antibody. Hybridoma. 1984 Fall;3(3):301–303. doi: 10.1089/hyb.1984.3.301. [DOI] [PubMed] [Google Scholar]
  19. Lai M. W., Chang M. H., Lee C. Y., Hsu H. C., Kau C. L. Cytomegalovirus-associated neonatal hepatitis. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 1992 Jul-Aug;33(4):264–272. [PubMed] [Google Scholar]
  20. Leist M., Gantner F., Bohlinger I., Tiegs G., Germann P. G., Wendel A. Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am J Pathol. 1995 May;146(5):1220–1234. [PMC free article] [PubMed] [Google Scholar]
  21. Leist M., Gantner F., Jilg S., Wendel A. Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. J Immunol. 1995 Feb 1;154(3):1307–1316. [PubMed] [Google Scholar]
  22. Levy G. A., Leibowitz J. L., Edgington T. S. Induction of monocyte procoagulant activity by murine hepatitis virus type 3 parallels disease susceptibility in mice. J Exp Med. 1981 Oct 1;154(4):1150–1163. doi: 10.1084/jem.154.4.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Li C., Fung L. S., Chung S., Crow A., Myers-Mason N., Phillips M. J., Leibowitz J. L., Cole E., Ottaway C. A., Levy G. Monoclonal antiprothrombinase (3D4.3) prevents mortality from murine hepatitis virus (MHV-3) infection. J Exp Med. 1992 Sep 1;176(3):689–697. doi: 10.1084/jem.176.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lucin P., Jonjić S., Messerle M., Polić B., Hengel H., Koszinowski U. H. Late phase inhibition of murine cytomegalovirus replication by synergistic action of interferon-gamma and tumour necrosis factor. J Gen Virol. 1994 Jan;75(Pt 1):101–110. doi: 10.1099/0022-1317-75-1-101. [DOI] [PubMed] [Google Scholar]
  25. Löhler J., Gossmann J., Kratzberg T., Lehmann-Grube F. Murine hepatitis caused by lymphocytic choriomeningitis virus. I. The hepatic lesions. Lab Invest. 1994 Feb;70(2):263–278. [PubMed] [Google Scholar]
  26. MIMS C. A. The response of mice to large intravenous injections of ectromelia virus. II. The growth of virus in the liver. Br J Exp Pathol. 1959 Dec;40:543–550. [PMC free article] [PubMed] [Google Scholar]
  27. MacPhee P. J., Dindzans V. J., Fung L. S., Levy G. A. Acute and chronic changes in the microcirculation of the liver in inbred strains of mice following infection with mouse hepatitis virus type 3. Hepatology. 1985 Jul-Aug;5(4):649–660. doi: 10.1002/hep.1840050422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McMichael A. J., Pilch J. R., Galfré G., Mason D. Y., Fabre J. W., Milstein C. A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol. 1979 Mar;9(3):205–210. doi: 10.1002/eji.1830090307. [DOI] [PubMed] [Google Scholar]
  29. Nagaki M., Muto Y., Ohnishi H., Yasuda S., Sano K., Naito T., Maeda T., Yamada T., Moriwaki H. Hepatic injury and lethal shock in galactosamine-sensitized mice induced by the superantigen staphylococcal enterotoxin B. Gastroenterology. 1994 Feb;106(2):450–458. doi: 10.1016/0016-5085(94)90604-1. [DOI] [PubMed] [Google Scholar]
  30. Olver S. D., Price P., Shellam G. R. Cytomegalovirus hepatitis: characterization of the inflammatory infiltrate in resistant and susceptible mice. Clin Exp Immunol. 1994 Dec;98(3):375–381. doi: 10.1111/j.1365-2249.1994.tb05500.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Orange J. S., Biron C. A. An absolute and restricted requirement for IL-12 in natural killer cell IFN-gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol. 1996 Feb 1;156(3):1138–1142. [PubMed] [Google Scholar]
  32. Orange J. S., Biron C. A. Characterization of early IL-12, IFN-alphabeta, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J Immunol. 1996 Jun 15;156(12):4746–4756. [PubMed] [Google Scholar]
  33. Orange J. S., Wang B., Terhorst C., Biron C. A. Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med. 1995 Oct 1;182(4):1045–1056. doi: 10.1084/jem.182.4.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Parr R. L., Fung L., Reneker J., Myers-Mason N., Leibowitz J. L., Levy G. Association of mouse fibrinogen-like protein with murine hepatitis virus-induced prothrombinase activity. J Virol. 1995 Aug;69(8):5033–5038. doi: 10.1128/jvi.69.8.5033-5038.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Paya C. V., Hermans P. E., Wiesner R. H., Ludwig J., Smith T. F., Rakela J., Krom R. A. Cytomegalovirus hepatitis in liver transplantation: prospective analysis of 93 consecutive orthotopic liver transplantations. J Infect Dis. 1989 Nov;160(5):752–758. doi: 10.1093/infdis/160.5.752. [DOI] [PubMed] [Google Scholar]
  36. Pilaro A. M., Taub D. D., McCormick K. L., Williams H. M., Sayers T. J., Fogler W. E., Wiltrout R. H. TNF-alpha is a principal cytokine involved in the recruitment of NK cells to liver parenchyma. J Immunol. 1994 Jul 1;153(1):333–342. [PubMed] [Google Scholar]
  37. Pope M., Rotstein O., Cole E., Sinclair S., Parr R., Cruz B., Fingerote R., Chung S., Gorczynski R., Fung L. Pattern of disease after murine hepatitis virus strain 3 infection correlates with macrophage activation and not viral replication. J Virol. 1995 Sep;69(9):5252–5260. doi: 10.1128/jvi.69.9.5252-5260.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Quinnan G. V., Manischewitz J. E., Ennis F. A. Cytotoxic T lymphocyte response to murine cytomegalovirus infection. Nature. 1978 Jun 15;273(5663):541–543. doi: 10.1038/273541a0. [DOI] [PubMed] [Google Scholar]
  39. Quinnan G. V., Manischewitz J. E. The role of natural killer cells and antibody-dependent cell-mediated cytotoxicity during murine cytomegalovirus infection. J Exp Med. 1979 Dec 1;150(6):1549–1554. doi: 10.1084/jem.150.6.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Reynolds R. P., Rahija R. J., Schenkman D. I., Richter C. B. Experimental murine cytomegalovirus infection in severe combined immunodeficient mice. Lab Anim Sci. 1993 Aug;43(4):291–295. [PubMed] [Google Scholar]
  41. Ruzek M. C., Miller A. H., Opal S. M., Pearce B. D., Biron C. A. Characterization of early cytokine responses and an interleukin (IL)-6-dependent pathway of endogenous glucocorticoid induction during murine cytomegalovirus infection. J Exp Med. 1997 Apr 7;185(7):1185–1192. doi: 10.1084/jem.185.7.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Selgrade M. K., Nedrud J. G., Collier A. M., Gardner D. E. Effects of cell source, mouse strain, and immunosuppressive treatment on production of virulent and attenuated murine cytomegalovirus. Infect Immun. 1981 Sep;33(3):840–847. doi: 10.1128/iai.33.3.840-847.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Senkevich T. G., Wolffe E. J., Buller R. M. Ectromelia virus RING finger protein is localized in virus factories and is required for virus replication in macrophages. J Virol. 1995 Jul;69(7):4103–4111. doi: 10.1128/jvi.69.7.4103-4111.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shanley J. D., Biczak L., Forman S. J. Acute murine cytomegalovirus infection induces lethal hepatitis. J Infect Dis. 1993 Feb;167(2):264–269. doi: 10.1093/infdis/167.2.264. [DOI] [PubMed] [Google Scholar]
  45. Shanley J. D. Host genetic factors influence murine cytomegalovirus lung infection and interstitial pneumonitis. J Gen Virol. 1984 Dec;65(Pt 12):2121–2128. doi: 10.1099/0022-1317-65-12-2121. [DOI] [PubMed] [Google Scholar]
  46. Shanley J. D., Pesanti E. L., Nugent K. M. The pathogenesis of pneumonitis due to murine cytomegalovirus. J Infect Dis. 1982 Sep;146(3):388–396. doi: 10.1093/infdis/146.3.388. [DOI] [PubMed] [Google Scholar]
  47. Shellam G. R., Allan J. E., Papadimitriou J. M., Bancroft G. J. Increased susceptibility to cytomegalovirus infection in beige mutant mice. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5104–5108. doi: 10.1073/pnas.78.8.5104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Smith M. A., Brennessel D. J. Cytomegalovirus. Infect Dis Clin North Am. 1994 Jun;8(2):427–438. [PubMed] [Google Scholar]
  49. Snover D. C., Horwitz C. A. Liver disease in cytomegalovirus mononucleosis: a light microscopical and immunoperoxidase study of six cases. Hepatology. 1984 May-Jun;4(3):408–412. doi: 10.1002/hep.1840040309. [DOI] [PubMed] [Google Scholar]
  50. Suitters A. J., Foulkes R., Opal S. M., Palardy J. E., Emtage J. S., Rolfe M., Stephens S., Morgan A., Holt A. R., Chaplin L. C. Differential effect of isotype on efficacy of anti-tumor necrosis factor alpha chimeric antibodies in experimental septic shock. J Exp Med. 1994 Mar 1;179(3):849–856. doi: 10.1084/jem.179.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tanaka K., Koga Y., Lu Y. Y., Zhang X. Y., Wang Y., Kimura G., Nomoto K. Murine cytomegalovirus-associated pneumonitis in the lungs free of the virus. J Clin Invest. 1994 Sep;94(3):1019–1025. doi: 10.1172/JCI117415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Taylor F. B., Jr The inflammatory-coagulant axis in the host response to gram-negative sepsis: regulatory roles of proteins and inhibitors of tissue factor. New Horiz. 1994 Nov;2(4):555–565. [PubMed] [Google Scholar]
  53. WALTERS M. N., JOSKE R. A., LEAK P. J., STANLEY N. F. MURINE INFECTION WITH REOVIRUS: I. PATHOLOGY OF THE ACUTE PHASE. Br J Exp Pathol. 1963 Aug;44:427–436. [PMC free article] [PubMed] [Google Scholar]
  54. Wang B., Biron C., She J., Higgins K., Sunshine M. J., Lacy E., Lonberg N., Terhorst C. A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3E gene. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9402–9406. doi: 10.1073/pnas.91.20.9402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Welsh R. M., Brubaker J. O., Vargas-Cortes M., O'Donnell C. L. Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function. J Exp Med. 1991 May 1;173(5):1053–1063. doi: 10.1084/jem.173.5.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Welsh R. M., Jr Cytotoxic cells induced during lymphocytic choriomeningitis virus infection of mice. I. Characterization of natural killer cell induction. J Exp Med. 1978 Jul 1;148(1):163–181. doi: 10.1084/jem.148.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Williams J. G., Jurkovich G. J., Hahnel G. B., Maier R. V. Macrophage priming by interferon gamma: a selective process with potentially harmful effects. J Leukoc Biol. 1992 Dec;52(6):579–584. doi: 10.1002/jlb.52.6.579. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES