Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):9450–9457. doi: 10.1128/jvi.71.12.9450-9457.1997

Alveolar macrophages regulate the induction of primary cytotoxic T-lymphocyte responses during influenza virus infection.

O L Wijburg 1, S DiNatale 1, J Vadolas 1, N van Rooijen 1, R A Strugnell 1
PMCID: PMC230250  PMID: 9371606

Abstract

Virus-specific cytotoxic T lymphocytes (CTL) are thought to be responsible for the eradication of respiratory influenza virus infections by direct cytolysis of virus-infected epithelial cells. In this study, we provide evidence for a role for alveolar macrophages (AM) in the regulation of pulmonary virus-specific CTL responses. Prior to infection with influenza virus, AM were selectively eliminated in vivo with a liposome-mediated depletion technique, and virus-specific CTL activities of lung and mediastinal lymph node (MLN) cells were assayed ex vivo and compared with those for normal mice. AM depletion resulted in increased primary CTL responses and changed the kinetics of the CTL response. Flow cytometric analysis of lung and MLN cells showed that the percentage of CD8+ cells was not altered after AM depletion and that lung cells from AM-depleted mice had an increased capacity to lyse virus-infected cells. Upon restimulation in vitro, virus-specific CTL activity in lung cells of normal mice was similar to that in lung cells of AM-depleted mice. Furthermore, elimination of AM resulted in increased virus titers in the lung, but virus clearance as a function of time was not affected. Our results show that AM regulate virus-specific CTL responses during respiratory influenza virus infection by removing viral particles, by downregulating the priming and activity of CTL in MLN cells, and by inhibiting the expansion of virus-specific CTL in the lung.

Full Text

The Full Text of this article is available as a PDF (222.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. L., Jones P. D. The immune response to influenza infection. Curr Top Microbiol Immunol. 1986;128:1–54. doi: 10.1007/978-3-642-71272-2_1. [DOI] [PubMed] [Google Scholar]
  2. Baumgarth N., Brown L., Jackson D., Kelso A. Novel features of the respiratory tract T-cell response to influenza virus infection: lung T cells increase expression of gamma interferon mRNA in vivo and maintain high levels of mRNA expression for interleukin-5 (IL-5) and IL-10. J Virol. 1994 Nov;68(11):7575–7581. doi: 10.1128/jvi.68.11.7575-7581.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baumgarth N., Kelso A. Functionally distinct T cells in three compartments of the respiratory tract after influenza virus infection. Eur J Immunol. 1996 Sep;26(9):2189–2197. doi: 10.1002/eji.1830260934. [DOI] [PubMed] [Google Scholar]
  4. Benne C. A., Benaissa-Trouw B., van Strijp J. A., Kraaijeveld C. A., van Iwaarden J. F. Surfactant protein A, but not surfactant protein D, is an opsonin for influenza A virus phagocytosis by rat alveolar macrophages. Eur J Immunol. 1997 Apr;27(4):886–890. doi: 10.1002/eji.1830270413. [DOI] [PubMed] [Google Scholar]
  5. Bice D. E., Shopp G. M. Antibody responses after lung immunization. Exp Lung Res. 1988;14(2):133–155. doi: 10.3109/01902148809115121. [DOI] [PubMed] [Google Scholar]
  6. Bilyk N., Holt P. G. Cytokine modulation of the immunosuppressive phenotype of pulmonary alveolar macrophage populations. Immunology. 1995 Oct;86(2):231–237. [PMC free article] [PubMed] [Google Scholar]
  7. Bilyk N., Holt P. G. Inhibition of the immunosuppressive activity of resident pulmonary alveolar macrophages by granulocyte/macrophage colony-stimulating factor. J Exp Med. 1993 Jun 1;177(6):1773–1777. doi: 10.1084/jem.177.6.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bilyk N., Mackenzie J. S., Papadimitriou J. M., Holt P. G. Functional studies on macrophage populations in the airways and the lung wall of SPF mice in the steady-state and during respiratory virus infection. Immunology. 1988 Nov;65(3):417–425. [PMC free article] [PubMed] [Google Scholar]
  9. Brain J. D. Lung macrophages: how many kinds are there? What do they do? Am Rev Respir Dis. 1988 Mar;137(3):507–509. doi: 10.1164/ajrccm/137.3.507. [DOI] [PubMed] [Google Scholar]
  10. Broug-Holub E., Toews G. B., van Iwaarden J. F., Strieter R. M., Kunkel S. L., Paine R., 3rd, Standiford T. J. Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infect Immun. 1997 Apr;65(4):1139–1146. doi: 10.1128/iai.65.4.1139-1146.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doherty P. C., Allan W., Eichelberger M., Carding S. R. Roles of alpha beta and gamma delta T cell subsets in viral immunity. Annu Rev Immunol. 1992;10:123–151. doi: 10.1146/annurev.iy.10.040192.001011. [DOI] [PubMed] [Google Scholar]
  12. Fujisawa H., Tsuru S., Taniguchi M., Zinnaka Y., Nomoto K. Protective mechanisms against pulmonary infection with influenza virus. I. Relative contribution of polymorphonuclear leukocytes and of alveolar macrophages to protection during the early phase of intranasal infection. J Gen Virol. 1987 Feb;68(Pt 2):425–432. doi: 10.1099/0022-1317-68-2-425. [DOI] [PubMed] [Google Scholar]
  13. Hamilton-Easton A., Eichelberger M. Virus-specific antigen presentation by different subsets of cells from lung and mediastinal lymph node tissues of influenza virus-infected mice. J Virol. 1995 Oct;69(10):6359–6366. doi: 10.1128/jvi.69.10.6359-6366.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harmsen A. G., Muggenburg B. A., Snipes M. B., Bice D. E. The role of macrophages in particle translocation from lungs to lymph nodes. Science. 1985 Dec 13;230(4731):1277–1280. doi: 10.1126/science.4071052. [DOI] [PubMed] [Google Scholar]
  15. Hennet T., Ziltener H. J., Frei K., Peterhans E. A kinetic study of immune mediators in the lungs of mice infected with influenza A virus. J Immunol. 1992 Aug 1;149(3):932–939. [PubMed] [Google Scholar]
  16. Hofmann P., Sprenger H., Kaufmann A., Bender A., Hasse C., Nain M., Gemsa D. Susceptibility of mononuclear phagocytes to influenza A virus infection and possible role in the antiviral response. J Leukoc Biol. 1997 Apr;61(4):408–414. doi: 10.1002/jlb.61.4.408. [DOI] [PubMed] [Google Scholar]
  17. Holt P. G. Down-regulation of immune responses in the lower respiratory tract: the role of alveolar macrophages. Clin Exp Immunol. 1986 Feb;63(2):261–270. [PMC free article] [PubMed] [Google Scholar]
  18. Holt P. G., Oliver J., Bilyk N., McMenamin C., McMenamin P. G., Kraal G., Thepen T. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med. 1993 Feb 1;177(2):397–407. doi: 10.1084/jem.177.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hou S., Hyland L., Ryan K. W., Portner A., Doherty P. C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature. 1994 Jun 23;369(6482):652–654. doi: 10.1038/369652a0. [DOI] [PubMed] [Google Scholar]
  20. McMichael A. J., Gotch F. M., Noble G. R., Beare P. A. Cytotoxic T-cell immunity to influenza. N Engl J Med. 1983 Jul 7;309(1):13–17. doi: 10.1056/NEJM198307073090103. [DOI] [PubMed] [Google Scholar]
  21. McWilliam A. S., Nelson D. J., Holt P. G. The biology of airway dendritic cells. Immunol Cell Biol. 1995 Oct;73(5):405–413. doi: 10.1038/icb.1995.63. [DOI] [PubMed] [Google Scholar]
  22. Pierres A., Naquet P., Van Agthoven A., Bekkhoucha F., Denizot F., Mishal Z., Schmitt-Verhulst A. M., Pierres M. A rat anti-mouse T4 monoclonal antibody (H129.19) inhibits the proliferation of Ia-reactive T cell clones and delineates two phenotypically distinct (T4+, Lyt-2,3-, and T4-, Lyt-2,3+) subsets among anti-Ia cytolytic T cell clones. J Immunol. 1984 Jun;132(6):2775–2782. [PubMed] [Google Scholar]
  23. Schon-Hegrad M. A., Oliver J., McMenamin P. G., Holt P. G. Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J Exp Med. 1991 Jun 1;173(6):1345–1356. doi: 10.1084/jem.173.6.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sertl K., Takemura T., Tschachler E., Ferrans V. J., Kaliner M. A., Shevach E. M. Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J Exp Med. 1986 Feb 1;163(2):436–451. doi: 10.1084/jem.163.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Steinman R. M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296. doi: 10.1146/annurev.iy.09.040191.001415. [DOI] [PubMed] [Google Scholar]
  26. Strickland D. H., Thepen T., Kees U. R., Kraal G., Holt P. G. Regulation of T-cell function in lung tissue by pulmonary alveolar macrophages. Immunology. 1993 Oct;80(2):266–272. [PMC free article] [PubMed] [Google Scholar]
  27. Strickland D., Kees U. R., Holt P. G. Regulation of T-cell activation in the lung: alveolar macrophages induce reversible T-cell anergy in vitro associated with inhibition of interleukin-2 receptor signal transduction. Immunology. 1996 Feb;87(2):250–258. doi: 10.1046/j.1365-2567.1996.459542.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strickland D., Kees U. R., Holt P. G. Regulation of T-cell activation in the lung: isolated lung T cells exhibit surface phenotypic characteristics of recent activation including down-modulated T-cell receptors, but are locked into the G0/G1 phase of the cell cycle. Immunology. 1996 Feb;87(2):242–249. doi: 10.1046/j.1365-2567.1996.460541.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thepen T., Claassen E., Hoeben K., Brevé J., Kraal G. Migration of alveolar macrophages from alveolar space to paracortical T cell area of the draining lymph node. Adv Exp Med Biol. 1993;329:305–310. doi: 10.1007/978-1-4615-2930-9_51. [DOI] [PubMed] [Google Scholar]
  30. Thepen T., Van Rooijen N., Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med. 1989 Aug 1;170(2):499–509. doi: 10.1084/jem.170.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tripp R. A., Hou S., Doherty P. C. Temporal loss of the activated L-selectin-low phenotype for virus-specific CD8+ memory T cells. J Immunol. 1995 Jun 1;154(11):5870–5875. [PubMed] [Google Scholar]
  32. Upham J. W., Strickland D. H., Bilyk N., Robinson B. W., Holt P. G. Alveolar macrophages from humans and rodents selectively inhibit T-cell proliferation but permit T-cell activation and cytokine secretion. Immunology. 1995 Jan;84(1):142–147. [PMC free article] [PubMed] [Google Scholar]
  33. Van Rooijen N., Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods. 1994 Sep 14;174(1-2):83–93. doi: 10.1016/0022-1759(94)90012-4. [DOI] [PubMed] [Google Scholar]
  34. Yap K. L., Ada G. L., McKenzie I. F. Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature. 1978 May 18;273(5659):238–239. doi: 10.1038/273238a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES