Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):9466–9474. doi: 10.1128/jvi.71.12.9466-9474.1997

Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells.

P B Robbins 1, X J Yu 1, D M Skelton 1, K A Pepper 1, R M Wasserman 1, L Zhu 1, D B Kohn 1
PMCID: PMC230252  PMID: 9371608

Abstract

Gene expression from the Moloney murine leukemia retrovirus (Mo-MuLV) is highly restricted in embryonic carcinoma (EC) and embryonic stem (ES) cells. We compared levels of expression in PA317 fibroblasts, F9 (EC) cells, and CCE (ES) cells by Mo-MuLV-based vectors and vectors based on our previously reported MND backbone, which has alterations to address three viral elements implicated as repressors of expression by Mo-MuLV: the enhancer, the primer binding site, and the negative-control region. Expression was evaluated with three reporter genes, the chloramphenicol acetyltransferase (CAT) gene, whose expression was measured by enzymatic assay and by Northern blotting; a truncated nerve growth factor receptor (tNGFR), whose expression was measured by fluorescence-activated cell sorting (FACS) as a cell surface protein; and the enhanced green fluorescent protein (EGFP), whose expression was measured intracellularly by flow cytometry. We found significantly higher levels of CAT activity (5- to 300-fold) and greater quantities of vector-specific transcripts in ES and EC cells transduced with the modified MND-CAT-SN vector than in those transduced with L-CAT-SN. Northern blot analysis indicated that long terminal repeat transcripts from MND-CAT-SN are >80 times more abundant than the L-CAT-SN transcripts. FACS analysis of tNGFR expression from a pair of vectors, L-tNGFR-SN and MND-tNGFR-SN, indicated that only 1.04% of the CCE cells containing the L-tNGFR-SN vector expressed the cell surface reporter, while the MND-tNGFR-SN vector drove expression in 99.54% of the CCE cells. Of the F9 cells containing the L-tNGFR-SN vector, 13.32% expressed tNGFR, while 99.89% of the F9 cells transduced with MND-tNGFR-SN showed expression. Essentially identical results were produced with an analogous pair of vectors encoding EGFP. In unselected pools of F9 cells 48 h posttransduction, the L-EGFP-SN vector drove expression in only 5% of the population while the MND-EGFP-SN vector drove expression in 88% of the cells. After more than 3 weeks in culture without selection, the proportion of cells showing expression from L-EGFP-SN decreased slightly to 3% while expression from the MND-EGFP-SN vector persisted in 80% of the cells. Interestingly, in the few ES and EC cells which did show expression from the L-tNGFR-SN or L-EGFP-SN vectors, the magnitude of reporter expression was similar to that from the MND-tNGFR-SN or MND-EGFP-SN vector in nearly all cells, suggesting that the MND vectors are far less susceptible to position-dependent variegation of expression than are the Mo-MuLV-based vectors. Therefore, the modified retroviral vector, MND, achieves higher net levels of expression due to a greater frequency of expression, which may be useful for the expression of exogenous genes in EC and ES cells.

Full Text

The Full Text of this article is available as a PDF (456.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal Y. P., Agrawal R. S., Sinclair A. M., Young D., Maruyama M., Levine F., Ho A. D. Cell-cycle kinetics and VSV-G pseudotyped retrovirus-mediated gene transfer in blood-derived CD34+ cells. Exp Hematol. 1996 May;24(6):738–747. [PubMed] [Google Scholar]
  2. Barklis E., Mulligan R. C., Jaenisch R. Chromosomal position or virus mutation permits retrovirus expression in embryonal carcinoma cells. Cell. 1986 Nov 7;47(3):391–399. doi: 10.1016/0092-8674(86)90596-9. [DOI] [PubMed] [Google Scholar]
  3. Becker K. G., Jedlicka P., Templeton N. S., Liotta L., Ozato K. Characterization of hUCRBP (YY1, NF-E1, delta): a transcription factor that binds the regulatory regions of many viral and cellular genes. Gene. 1994 Dec 15;150(2):259–266. doi: 10.1016/0378-1119(94)90435-9. [DOI] [PubMed] [Google Scholar]
  4. Bowtell D. D., Cory S., Johnson G. R., Gonda T. J. Comparison of expression in hemopoietic cells by retroviral vectors carrying two genes. J Virol. 1988 Jul;62(7):2464–2473. doi: 10.1128/jvi.62.7.2464-2473.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyes J., Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 1991 Mar 22;64(6):1123–1134. doi: 10.1016/0092-8674(91)90267-3. [DOI] [PubMed] [Google Scholar]
  6. Brandeis M., Frank D., Keshet I., Siegfried Z., Mendelsohn M., Nemes A., Temper V., Razin A., Cedar H. Sp1 elements protect a CpG island from de novo methylation. Nature. 1994 Sep 29;371(6496):435–438. doi: 10.1038/371435a0. [DOI] [PubMed] [Google Scholar]
  7. Byun J., Kim S. H., Kim J. M., Yu S. S., Robbins P. D., Yim J., Kim S. Analysis of the relative level of gene expression from different retroviral vectors used for gene therapy. Gene Ther. 1996 Sep;3(9):780–788. [PubMed] [Google Scholar]
  8. Cedar H. DNA methylation and gene activity. Cell. 1988 Apr 8;53(1):3–4. doi: 10.1016/0092-8674(88)90479-5. [DOI] [PubMed] [Google Scholar]
  9. Challita P. M., Kohn D. B. Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2567–2571. doi: 10.1073/pnas.91.7.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Challita P. M., Skelton D., el-Khoueiry A., Yu X. J., Weinberg K., Kohn D. B. Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J Virol. 1995 Feb;69(2):748–755. doi: 10.1128/jvi.69.2.748-755.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  12. Colicelli J., Goff S. P. Isolation of a recombinant murine leukemia virus utilizing a new primer tRNA. J Virol. 1986 Jan;57(1):37–45. doi: 10.1128/jvi.57.1.37-45.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans M. J., Kaufman M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981 Jul 9;292(5819):154–156. doi: 10.1038/292154a0. [DOI] [PubMed] [Google Scholar]
  14. Feuer G., Taketo M., Hanecak R. C., Fan H. Two blocks in Moloney murine leukemia virus expression in undifferentiated F9 embryonal carcinoma cells as determined by transient expression assays. J Virol. 1989 May;63(5):2317–2324. doi: 10.1128/jvi.63.5.2317-2324.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Flanagan J. R., Becker K. G., Ennist D. L., Gleason S. L., Driggers P. H., Levi B. Z., Appella E., Ozato K. Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus. Mol Cell Biol. 1992 Jan;12(1):38–44. doi: 10.1128/mcb.12.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Flanagan J. R., Krieg A. M., Max E. E., Khan A. S. Negative control region at the 5' end of murine leukemia virus long terminal repeats. Mol Cell Biol. 1989 Feb;9(2):739–746. doi: 10.1128/mcb.9.2.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Franz T., Hilberg F., Seliger B., Stocking C., Ostertag W. Retroviral mutants efficiently expressed in embryonal carcinoma cells. Proc Natl Acad Sci U S A. 1986 May;83(10):3292–3296. doi: 10.1073/pnas.83.10.3292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gorman C. M., Rigby P. W., Lane D. P. Negative regulation of viral enhancers in undifferentiated embryonic stem cells. Cell. 1985 Sep;42(2):519–526. doi: 10.1016/0092-8674(85)90109-6. [DOI] [PubMed] [Google Scholar]
  19. Grez M., Akgün E., Hilberg F., Ostertag W. Embryonic stem cell virus, a recombinant murine retrovirus with expression in embryonic stem cells. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9202–9206. doi: 10.1073/pnas.87.23.9202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grez M., Zörnig M., Nowock J., Ziegler M. A single point mutation activates the Moloney murine leukemia virus long terminal repeat in embryonal stem cells. J Virol. 1991 Sep;65(9):4691–4698. doi: 10.1128/jvi.65.9.4691-4698.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hilberg F., Stocking C., Ostertag W., Grez M. Functional analysis of a retroviral host-range mutant: altered long terminal repeat sequences allow expression in embryonal carcinoma cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5232–5236. doi: 10.1073/pnas.84.15.5232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hoeben R. C., Migchielsen A. A., van der Jagt R. C., van Ormondt H., van der Eb A. J. Inactivation of the Moloney murine leukemia virus long terminal repeat in murine fibroblast cell lines is associated with methylation and dependent on its chromosomal position. J Virol. 1991 Feb;65(2):904–912. doi: 10.1128/jvi.65.2.904-912.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kohn D. B. The current status of gene therapy using hematopoietic stem cells. Curr Opin Pediatr. 1995 Feb;7(1):56–63. doi: 10.1097/00008480-199502000-00011. [DOI] [PubMed] [Google Scholar]
  24. Kollek R., Stocking C., Smadja-Joffe F., Ostertag W. Molecular cloning and characterization of a leukemia-inducing myeloproliferative sarcoma virus and two of its temperature-sensitive mutants. J Virol. 1984 Jun;50(3):717–724. doi: 10.1128/jvi.50.3.717-724.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lengauer C., Kinzler K. W., Vogelstein B. DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2545–2550. doi: 10.1073/pnas.94.6.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Linney E., Davis B., Overhauser J., Chao E., Fan H. Non-function of a Moloney murine leukaemia virus regulatory sequence in F9 embryonal carcinoma cells. 1984 Mar 29-Apr 4Nature. 308(5958):470–472. doi: 10.1038/308470a0. [DOI] [PubMed] [Google Scholar]
  27. Loh T. P., Sievert L. L., Scott R. W. Proviral sequences that restrict retroviral expression in mouse embryonal carcinoma cells. Mol Cell Biol. 1987 Oct;7(10):3775–3784. doi: 10.1128/mcb.7.10.3775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lund A.H., Duch M., Pedersen F.S. Transcriptional Silencing of Retroviral Vectors. J Biomed Sci. 1996 Nov-Dec;3(6):365–378. doi: 10.1007/BF02258042. [DOI] [PubMed] [Google Scholar]
  29. Macleod D., Charlton J., Mullins J., Bird A. P. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 1994 Oct 1;8(19):2282–2292. doi: 10.1101/gad.8.19.2282. [DOI] [PubMed] [Google Scholar]
  30. Markowitz D., Goff S., Bank A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol. 1988 Apr;62(4):1120–1124. doi: 10.1128/jvi.62.4.1120-1124.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McCune S. L., Townes T. M. Retroviral vector sequences inhibit human beta-globin gene expression in transgenic mice. Nucleic Acids Res. 1994 Oct 25;22(21):4477–4481. doi: 10.1093/nar/22.21.4477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miller A. D., Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986 Aug;6(8):2895–2902. doi: 10.1128/mcb.6.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miller A. D. Cell-surface receptors for retroviruses and implications for gene transfer. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11407–11413. doi: 10.1073/pnas.93.21.11407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Miller A. D., Rosman G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989 Oct;7(9):980-2, 984-6, 989-90. [PMC free article] [PubMed] [Google Scholar]
  35. Milot E., Fraser P., Grosveld F. Position effects and genetic disease. Trends Genet. 1996 Apr;12(4):123–126. doi: 10.1016/0168-9525(96)30019-x. [DOI] [PubMed] [Google Scholar]
  36. Niwa O., Yokota Y., Ishida H., Sugahara T. Independent mechanisms involved in suppression of the Moloney leukemia virus genome during differentiation of murine teratocarcinoma cells. Cell. 1983 Apr;32(4):1105–1113. doi: 10.1016/0092-8674(83)90294-5. [DOI] [PubMed] [Google Scholar]
  37. Ostertag W., Vehmeyer K., Fagg B., Pragnell I. B., Paetz W., Le Bousse M. C., Smadja-Joffe F., Klein B., Jasmin C., Eisen H. Myeloproliferative virus, a cloned murine sarcoma virus with spleen focus-forming properties in adult mice. J Virol. 1980 Feb;33(2):573–582. doi: 10.1128/jvi.33.2.573-582.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Petersen R., Kempler G., Barklis E. A stem cell-specific silencer in the primer-binding site of a retrovirus. Mol Cell Biol. 1991 Mar;11(3):1214–1221. doi: 10.1128/mcb.11.3.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Prince V. E., Rigby P. W. Derivatives of Moloney murine sarcoma virus capable of being transcribed in embryonal carcinoma stem cells have gained a functional Sp1 binding site. J Virol. 1991 Apr;65(4):1803–1811. doi: 10.1128/jvi.65.4.1803-1811.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Razin A., Cedar H. DNA methylation and embryogenesis. EXS. 1993;64:343–357. doi: 10.1007/978-3-0348-9118-9_15. [DOI] [PubMed] [Google Scholar]
  41. Silke J., Rother K. I., Georgiev O., Schaffner W., Matsuo K. Complex demethylation patterns at Sp1 binding sites in F9 embryonal carcinoma cells. FEBS Lett. 1995 Aug 21;370(3):170–174. doi: 10.1016/0014-5793(95)00830-3. [DOI] [PubMed] [Google Scholar]
  42. Stewart C. L., Stuhlmann H., Jähner D., Jaenisch R. De novo methylation, expression, and infectivity of retroviral genomes introduced into embryonal carcinoma cells. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4098–4102. doi: 10.1073/pnas.79.13.4098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stocking C., Kollek R., Bergholz U., Ostertag W. Long terminal repeat sequences impart hematopoietic transformation properties to the myeloproliferative sarcoma virus. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5746–5750. doi: 10.1073/pnas.82.17.5746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Taketo M., Shaffer D. J. Deletions in a recombinant retrovirus genome associated with its expression in embryonal carcinoma cells. J Virol. 1989 Oct;63(10):4431–4433. doi: 10.1128/jvi.63.10.4431-4433.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tsukiyama T., Niwa O., Yokoro K. Mechanism of suppression of the long terminal repeat of Moloney leukemia virus in mouse embryonal carcinoma cells. Mol Cell Biol. 1989 Nov;9(11):4670–4676. doi: 10.1128/mcb.9.11.4670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Walters M. C., Fiering S., Eidemiller J., Magis W., Groudine M., Martin D. I. Enhancers increase the probability but not the level of gene expression. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7125–7129. doi: 10.1073/pnas.92.15.7125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weiher H., Barklis E., Ostertag W., Jaenisch R. Two distinct sequence elements mediate retroviral gene expression in embryonal carcinoma cells. J Virol. 1987 Sep;61(9):2742–2746. doi: 10.1128/jvi.61.9.2742-2746.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wilson C., Bellen H. J., Gehring W. J. Position effects on eukaryotic gene expression. Annu Rev Cell Biol. 1990;6:679–714. doi: 10.1146/annurev.cb.06.110190.003335. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES