Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):9482–9489. doi: 10.1128/jvi.71.12.9482-9489.1997

The 3' untranslated region of the B19 parvovirus capsid protein mRNAs inhibits its own mRNA translation in nonpermissive cells.

C Pallier 1, A Greco 1, J Le Junter 1, A Saib 1, I Vassias 1, F Morinet 1
PMCID: PMC230254  PMID: 9371610

Abstract

Although parvoviruses are found throughout the animal kingdom, only the human pathogenic B19 virus has so far been shown to possess a limited host range, with erythroid progenitor cells as the main target cells supporting B19 propagation. The underlying mechanism of such erythroid tropism is still unexplained. Synthesis of the NS1 nonstructural protein occurs in permissive and nonpermissive cells, such as megakaryocytes, whereas synthesis of the VP1 and VP2 capsid proteins seems to be restricted to burst-forming units and CFU of erythroid cells. In nonpermissive cells, the NS1 protein is overexpressed and the NS1 RNAs are the predominant RNA species. However, the VP1 and VP2 proteins are not detectable, although the corresponding mRNAs are synthesized. Since all transcripts have part of the 5' untranslated region (5' UTR) in common but distinct 3' UTRs characterizing the nonstructural- and structural-protein mRNAs, we investigated, in transient transfection assays, the possible involvement of the 3' UTR of the capsid protein mRNAs in VP1 and VP2 protein synthesis in nonpermissive Cos cells. The results showed that (i) the 3' UTR of mRNAs coding for the capsid proteins repressed VP1 and VP2 protein synthesis, (ii) the 3' UTR did not affect nuclear export or mRNA stability, and (iii) mRNAs bearing the 3' UTR of the capsid protein mRNAs did not associate with ribosomes at all. Taken together, these results indicate that in nonpermissive cells, the 3' UTR of the capsid protein mRNAs represses capsid protein synthesis at the translational level by inhibiting ribosome loading.

Full Text

The Full Text of this article is available as a PDF (541.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beard C., St Amand J., Astell C. R. Transient expression of B19 parvovirus gene products in COS-7 cells transfected with B19-SV40 hybrid vectors. Virology. 1989 Oct;172(2):659–664. doi: 10.1016/0042-6822(89)90211-0. [DOI] [PubMed] [Google Scholar]
  2. Blundell M. C., Beard C., Astell C. R. In vitro identification of a B19 parvovirus promoter. Virology. 1987 Apr;157(2):534–538. doi: 10.1016/0042-6822(87)90296-0. [DOI] [PubMed] [Google Scholar]
  3. Brown K. E., Hibbs J. R., Gallinella G., Anderson S. M., Lehman E. D., McCarthy P., Young N. S. Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen). N Engl J Med. 1994 Apr 28;330(17):1192–1196. doi: 10.1056/NEJM199404283301704. [DOI] [PubMed] [Google Scholar]
  4. Cotmore S. F., McKie V. C., Anderson L. J., Astell C. R., Tattersall P. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments. J Virol. 1986 Nov;60(2):548–557. doi: 10.1128/jvi.60.2.548-557.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Decker C. J., Parker R. Mechanisms of mRNA degradation in eukaryotes. Trends Biochem Sci. 1994 Aug;19(8):336–340. doi: 10.1016/0968-0004(94)90073-6. [DOI] [PubMed] [Google Scholar]
  6. Diaz J. J., Simonin D., Massé T., Deviller P., Kindbeiter K., Denoroy L., Madjar J. J. The herpes simplex virus type 1 US11 gene product is a phosphorylated protein found to be non-specifically associated with both ribosomal subunits. J Gen Virol. 1993 Mar;74(Pt 3):397–406. doi: 10.1099/0022-1317-74-3-397. [DOI] [PubMed] [Google Scholar]
  7. Doerig C., Hirt B., Antonietti J. P., Beard P. Nonstructural protein of parvoviruses B19 and minute virus of mice controls transcription. J Virol. 1990 Jan;64(1):387–396. doi: 10.1128/jvi.64.1.387-396.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furth P. A., Baker C. C. An element in the bovine papillomavirus late 3' untranslated region reduces polyadenylated cytoplasmic RNA levels. J Virol. 1991 Nov;65(11):5806–5812. doi: 10.1128/jvi.65.11.5806-5812.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giron M. L., Rozain F., Debons-Guillemin M. C., Canivet M., Peries J., Emanoil-Ravier R. Human foamy virus polypeptides: identification of env and bel gene products. J Virol. 1993 Jun;67(6):3596–3600. doi: 10.1128/jvi.67.6.3596-3600.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greco A., Simonin D., Diaz J. J., Barjhoux L., Kindbeiter K., Madjar J. J., Massé T. The DNA sequence coding for the 5' untranslated region of herpes simplex virus type 1 ICP22 mRNA mediates a high level of gene expression. J Gen Virol. 1994 Jul;75(Pt 7):1693–1702. doi: 10.1099/0022-1317-75-7-1693. [DOI] [PubMed] [Google Scholar]
  11. Hentze M. W. Translational regulation: versatile mechanisms for metabolic and developmental control. Curr Opin Cell Biol. 1995 Jun;7(3):393–398. doi: 10.1016/0955-0674(95)80095-6. [DOI] [PubMed] [Google Scholar]
  12. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Leruez-Ville M., Vassias I., Pallier C., Cecille A., Hazan U., Morinet F. Establishment of a cell line expressing human parvovirus B19 non-structural protein from an inducible promoter. J Gen Virol. 1997 Jan;78(Pt 1):215–219. doi: 10.1099/0022-1317-78-1-215. [DOI] [PubMed] [Google Scholar]
  15. Liu J. M., Fujii H., Green S. W., Komatsu N., Young N. S., Shimada T. Indiscriminate activity from the B19 parvovirus p6 promoter in nonpermissive cells. Virology. 1991 May;182(1):361–364. doi: 10.1016/0042-6822(91)90682-2. [DOI] [PubMed] [Google Scholar]
  16. Liu J. M., Green S. W., Shimada T., Young N. S. A block in full-length transcript maturation in cells nonpermissive for B19 parvovirus. J Virol. 1992 Aug;66(8):4686–4692. doi: 10.1128/jvi.66.8.4686-4692.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luo W., Astell C. R. A novel protein encoded by small RNAs of parvovirus B19. Virology. 1993 Aug;195(2):448–455. doi: 10.1006/viro.1993.1395. [DOI] [PubMed] [Google Scholar]
  18. Momoeda M., Wong S., Kawase M., Young N. S., Kajigaya S. A putative nucleoside triphosphate-binding domain in the nonstructural protein of B19 parvovirus is required for cytotoxicity. J Virol. 1994 Dec;68(12):8443–8446. doi: 10.1128/jvi.68.12.8443-8446.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morey A. L., Keeling J. W., Porter H. J., Fleming K. A. Clinical and histopathological features of parvovirus B19 infection in the human fetus. Br J Obstet Gynaecol. 1992 Jul;99(7):566–574. doi: 10.1111/j.1471-0528.1992.tb13822.x. [DOI] [PubMed] [Google Scholar]
  20. Morinet F., D'Auriol L., Tratschin J. D., Galibert F. Expression of the human parvovirus B19 protein fused to protein A in Escherichia coli: recognition by IgM and IgG antibodies in human sera. J Gen Virol. 1989 Nov;70(Pt 11):3091–3097. doi: 10.1099/0022-1317-70-11-3091. [DOI] [PubMed] [Google Scholar]
  21. Mortimer P. P., Humphries R. K., Moore J. G., Purcell R. H., Young N. S. A human parvovirus-like virus inhibits haematopoietic colony formation in vitro. 1983 Mar 31-Apr 6Nature. 302(5907):426–429. doi: 10.1038/302426a0. [DOI] [PubMed] [Google Scholar]
  22. Muhlrad D., Decker C. J., Parker R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript. Genes Dev. 1994 Apr 1;8(7):855–866. doi: 10.1101/gad.8.7.855. [DOI] [PubMed] [Google Scholar]
  23. Naeger L. K., Cater J., Pintel D. J. The small nonstructural protein (NS2) of the parvovirus minute virus of mice is required for efficient DNA replication and infectious virus production in a cell-type-specific manner. J Virol. 1990 Dec;64(12):6166–6175. doi: 10.1128/jvi.64.12.6166-6175.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ostareck-Lederer A., Ostareck D. H., Standart N., Thiele B. J. Translation of 15-lipoxygenase mRNA is inhibited by a protein that binds to a repeated sequence in the 3' untranslated region. EMBO J. 1994 Mar 15;13(6):1476–1481. doi: 10.1002/j.1460-2075.1994.tb06402.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ozawa K., Ayub J., Hao Y. S., Kurtzman G., Shimada T., Young N. Novel transcription map for the B19 (human) pathogenic parvovirus. J Virol. 1987 Aug;61(8):2395–2406. doi: 10.1128/jvi.61.8.2395-2406.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ozawa K., Ayub J., Kajigaya S., Shimada T., Young N. The gene encoding the nonstructural protein of B19 (human) parvovirus may be lethal in transfected cells. J Virol. 1988 Aug;62(8):2884–2889. doi: 10.1128/jvi.62.8.2884-2889.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ozawa K., Ayub J., Young N. Translational regulation of B19 parvovirus capsid protein production by multiple upstream AUG triplets. J Biol Chem. 1988 Aug 5;263(22):10922–10926. [PubMed] [Google Scholar]
  28. Ozawa K., Kurtzman G., Young N. Replication of the B19 parvovirus in human bone marrow cell cultures. Science. 1986 Aug 22;233(4766):883–886. doi: 10.1126/science.3738514. [DOI] [PubMed] [Google Scholar]
  29. Ozawa K., Young N. Characterization of capsid and noncapsid proteins of B19 parvovirus propagated in human erythroid bone marrow cell cultures. J Virol. 1987 Aug;61(8):2627–2630. doi: 10.1128/jvi.61.8.2627-2630.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Palmer P., Pallier C., Leruez-Ville M., Deplanche M., Morinet F. Antibody response to human parvovirus B19 in patients with primary infection by immunoblot assay with recombinant proteins. Clin Diagn Lab Immunol. 1996 Mar;3(2):236–238. doi: 10.1128/cdli.3.2.236-238.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Patzel V., Sczakiel G. The hepatitis B virus posttranscriptional regulatory element contains a highly stable RNA secondary structure. Biochem Biophys Res Commun. 1997 Feb 24;231(3):864–867. doi: 10.1006/bbrc.1997.6205. [DOI] [PubMed] [Google Scholar]
  32. Pavlakis G. N., Felber B. K. Regulation of expression of human immunodeficiency virus. New Biol. 1990 Jan;2(1):20–31. [PubMed] [Google Scholar]
  33. Ross J. Control of messenger RNA stability in higher eukaryotes. Trends Genet. 1996 May;12(5):171–175. doi: 10.1016/0168-9525(96)10016-0. [DOI] [PubMed] [Google Scholar]
  34. Shade R. O., Blundell M. C., Cotmore S. F., Tattersall P., Astell C. R. Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. J Virol. 1986 Jun;58(3):921–936. doi: 10.1128/jvi.58.3.921-936.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shyu A. B., Belasco J. G., Greenberg M. E. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 1991 Feb;5(2):221–231. doi: 10.1101/gad.5.2.221. [DOI] [PubMed] [Google Scholar]
  36. Snyder R. O., Im D. S., Muzyczka N. Evidence for covalent attachment of the adeno-associated virus (AAV) rep protein to the ends of the AAV genome. J Virol. 1990 Dec;64(12):6204–6213. doi: 10.1128/jvi.64.12.6204-6213.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sol N., Morinet F., Alizon M., Hazan U. Trans-activation of the long terminal repeat of human immunodeficiency virus type 1 by the parvovirus B19 NS1 gene product. J Gen Virol. 1993 Sep;74(Pt 9):2011–2014. doi: 10.1099/0022-1317-74-9-2011. [DOI] [PubMed] [Google Scholar]
  38. Srivastava A., Bruno E., Briddell R., Cooper R., Srivastava C., van Besien K., Hoffman R. Parvovirus B19-induced perturbation of human megakaryocytopoiesis in vitro. Blood. 1990 Nov 15;76(10):1997–2004. [PubMed] [Google Scholar]
  39. St Amand J., Astell C. R. Identification and characterization of a family of 11-kDa proteins encoded by the human parvovirus B19. Virology. 1993 Jan;192(1):121–131. doi: 10.1006/viro.1993.1014. [DOI] [PubMed] [Google Scholar]
  40. Takahashi T., Ozawa K., Takahashi K., Asano S., Takaku F. Susceptibility of human erythropoietic cells to B19 parvovirus in vitro increases with differentiation. Blood. 1990 Feb 1;75(3):603–610. [PubMed] [Google Scholar]
  41. Trempe J. P., Carter B. J. Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation. J Virol. 1988 Jan;62(1):68–74. doi: 10.1128/jvi.62.1.68-74.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vassias I., Perol S., Coulombel L., Thebault M. C., Lagrange P. H., Morinet F. An in situ hybridization technique for the study of B19 human parvovirus replication in bone marrow cell cultures. J Virol Methods. 1993 Oct;44(2-3):329–338. doi: 10.1016/0166-0934(93)90067-2. [DOI] [PubMed] [Google Scholar]
  43. Wisdom R., Lee W. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev. 1991 Feb;5(2):232–243. doi: 10.1101/gad.5.2.232. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES