Abstract
The Nef from a highly virulent strain of simian immunodeficiency virus (SIV), SIVpbj14, and a Nef from the traditional strain SIVmac239 bearing the mutation from RQ to YE (YE-Nef) both induce an acute lethal disease in monkeys. The YE mutation and its surrounding sequence resemble the immunoreceptor tyrosine-based activation motif (ITAM), which is present in the cytoplasmic tail of T- and B-cell antigen receptors and mediates signaling during lymphocyte activation. We show here that the ITAM from YE-Nef performs the same function. First, not only does YE-Nef increase the activity of the transcription factor NFAT, which is one of the downstream targets of T-cell activation, but the ITAM from the YE-Nef by itself also activates NFAT. Second, the ITAM from YE-Nef is phosphorylated on tyrosine residues by Lck and associates with ZAP-70, a T-cell-specific tyrosine kinase. The phosphorylation of both conserved tyrosine residues on the ITAM is required for the recruitment of ZAP-70. Finally, Lck is required for the activation of NFAT by YE-Nef. These results demonstrate that YE-Nef contains a functional ITAM and elucidate the molecular mechanisms underlying the pathogenesis of SIVpbj14.
Full Text
The Full Text of this article is available as a PDF (431.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baur A. S., Sawai E. T., Dazin P., Fantl W. J., Cheng-Mayer C., Peterlin B. M. HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization. Immunity. 1994 Aug;1(5):373–384. doi: 10.1016/1074-7613(94)90068-x. [DOI] [PubMed] [Google Scholar]
- Beaufils P., Choquet D., Mamoun R. Z., Malissen B. The (YXXL/I)2 signalling motif found in the cytoplasmic segments of the bovine leukaemia virus envelope protein and Epstein-Barr virus latent membrane protein 2A can elicit early and late lymphocyte activation events. EMBO J. 1993 Dec 15;12(13):5105–5112. doi: 10.1002/j.1460-2075.1993.tb06205.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brady H. J., Pennington D. J., Miles C. G., Dzierzak E. A. CD4 cell surface downregulation in HIV-1 Nef transgenic mice is a consequence of intracellular sequestration. EMBO J. 1993 Dec 15;12(13):4923–4932. doi: 10.1002/j.1460-2075.1993.tb06186.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bukrinsky M. I., Haggerty S., Dempsey M. P., Sharova N., Adzhubel A., Spitz L., Lewis P., Goldfarb D., Emerman M., Stevenson M. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature. 1993 Oct 14;365(6447):666–669. doi: 10.1038/365666a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cambier J. C. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J Immunol. 1995 Oct 1;155(7):3281–3285. [PubMed] [Google Scholar]
- Cartier C., Deckert M., Grangeasse C., Trauger R., Jensen F., Bernard A., Cozzone A., Desgranges C., Boyer V. Association of ERK2 mitogen-activated protein kinase with human immunodeficiency virus particles. J Virol. 1997 Jun;71(6):4832–4837. doi: 10.1128/jvi.71.6.4832-4837.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan A. C., Iwashima M., Turck C. W., Weiss A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell. 1992 Nov 13;71(4):649–662. doi: 10.1016/0092-8674(92)90598-7. [DOI] [PubMed] [Google Scholar]
- Collette Y., Dutartre H., Benziane A., Ramos-Morales, Benarous R., Harris M., Olive D. Physical and functional interaction of Nef with Lck. HIV-1 Nef-induced T-cell signaling defects. J Biol Chem. 1996 Mar 15;271(11):6333–6341. doi: 10.1074/jbc.271.11.6333. [DOI] [PubMed] [Google Scholar]
- Deacon N. J., Tsykin A., Solomon A., Smith K., Ludford-Menting M., Hooker D. J., McPhee D. A., Greenway A. L., Ellett A., Chatfield C. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science. 1995 Nov 10;270(5238):988–991. doi: 10.1126/science.270.5238.988. [DOI] [PubMed] [Google Scholar]
- Du Z., Ilyinskii P. O., Sasseville V. G., Newstein M., Lackner A. A., Desrosiers R. C. Requirements for lymphocyte activation by unusual strains of simian immunodeficiency virus. J Virol. 1996 Jun;70(6):4157–4161. doi: 10.1128/jvi.70.6.4157-4161.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Du Z., Lang S. M., Sasseville V. G., Lackner A. A., Ilyinskii P. O., Daniel M. D., Jung J. U., Desrosiers R. C. Identification of a nef allele that causes lymphocyte activation and acute disease in macaque monkeys. Cell. 1995 Aug 25;82(4):665–674. doi: 10.1016/0092-8674(95)90038-1. [DOI] [PubMed] [Google Scholar]
- Fujii Y., Otake K., Fujita Y., Yamamoto N., Nagai Y., Tashiro M., Adachi A. Clustered localization of oligomeric Nef protein of human immunodeficiency virus type 1 on the cell surface. FEBS Lett. 1996 Oct 21;395(2-3):257–261. doi: 10.1016/0014-5793(96)01048-4. [DOI] [PubMed] [Google Scholar]
- Fultz P. N., McClure H. M., Anderson D. C., Switzer W. M. Identification and biologic characterization of an acutely lethal variant of simian immunodeficiency virus from sooty mangabeys (SIV/SMM). AIDS Res Hum Retroviruses. 1989 Aug;5(4):397–409. doi: 10.1089/aid.1989.5.397. [DOI] [PubMed] [Google Scholar]
- Fultz P. N. Replication of an acutely lethal simian immunodeficiency virus activates and induces proliferation of lymphocytes. J Virol. 1991 Sep;65(9):4902–4909. doi: 10.1128/jvi.65.9.4902-4909.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallay P., Swingler S., Aiken C., Trono D. HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator. Cell. 1995 Feb 10;80(3):379–388. doi: 10.1016/0092-8674(95)90488-3. [DOI] [PubMed] [Google Scholar]
- Graziani A., Galimi F., Medico E., Cottone E., Gramaglia D., Boccaccio C., Comoglio P. M. The HIV-1 nef protein interferes with phosphatidylinositol 3-kinase activation 1. J Biol Chem. 1996 Mar 22;271(12):6590–6593. doi: 10.1074/jbc.271.12.6590. [DOI] [PubMed] [Google Scholar]
- Groves T., Smiley P., Cooke M. P., Forbush K., Perlmutter R. M., Guidos C. J. Fyn can partially substitute for Lck in T lymphocyte development. Immunity. 1996 Nov;5(5):417–428. doi: 10.1016/s1074-7613(00)80498-7. [DOI] [PubMed] [Google Scholar]
- Grzesiek S., Bax A., Clore G. M., Gronenborn A. M., Hu J. S., Kaufman J., Palmer I., Stahl S. J., Wingfield P. T. The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Nat Struct Biol. 1996 Apr;3(4):340–345. doi: 10.1038/nsb0496-340. [DOI] [PubMed] [Google Scholar]
- Harris M. From negative factor to a critical role in virus pathogenesis: the changing fortunes of Nef. J Gen Virol. 1996 Oct;77(Pt 10):2379–2392. doi: 10.1099/0022-1317-77-10-2379. [DOI] [PubMed] [Google Scholar]
- Hodge D. R., Chen Y. M., Samuel K. P. Oligomerization of the HIV type 2 Nef protein: mutational analysis of the heptad leucine repeat motif and cysteine residues. AIDS Res Hum Retroviruses. 1995 Jan;11(1):65–79. doi: 10.1089/aid.1995.11.65. [DOI] [PubMed] [Google Scholar]
- Howe L. R., Weiss A. Multiple kinases mediate T-cell-receptor signaling. Trends Biochem Sci. 1995 Feb;20(2):59–64. doi: 10.1016/s0968-0004(00)88958-6. [DOI] [PubMed] [Google Scholar]
- Irving B. A., Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991 Mar 8;64(5):891–901. doi: 10.1016/0092-8674(91)90314-o. [DOI] [PubMed] [Google Scholar]
- Iwashima M., Irving B. A., van Oers N. S., Chan A. C., Weiss A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science. 1994 Feb 25;263(5150):1136–1139. doi: 10.1126/science.7509083. [DOI] [PubMed] [Google Scholar]
- Jamieson B. D., Aldrovandi G. M., Planelles V., Jowett J. B., Gao L., Bloch L. M., Chen I. S., Zack J. A. Requirement of human immunodeficiency virus type 1 nef for in vivo replication and pathogenicity. J Virol. 1994 Jun;68(6):3478–3485. doi: 10.1128/jvi.68.6.3478-3485.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kestler H. W., 3rd, Ringler D. J., Mori K., Panicali D. L., Sehgal P. K., Daniel M. D., Desrosiers R. C. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell. 1991 May 17;65(4):651–662. doi: 10.1016/0092-8674(91)90097-i. [DOI] [PubMed] [Google Scholar]
- Kienzle N., Freund J., Kalbitzer H. R., Mueller-Lantzsch N. Oligomerization of the Nef protein from human immunodeficiency virus (HIV) type 1. Eur J Biochem. 1993 Jun 1;214(2):451–457. doi: 10.1111/j.1432-1033.1993.tb17941.x. [DOI] [PubMed] [Google Scholar]
- Lee C. H., Saksela K., Mirza U. A., Chait B. T., Kuriyan J. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell. 1996 Jun 14;85(6):931–942. doi: 10.1016/s0092-8674(00)81276-3. [DOI] [PubMed] [Google Scholar]
- Ley S. C., Marsh M., Bebbington C. R., Proudfoot K., Jordan P. Distinct intracellular localization of Lck and Fyn protein tyrosine kinases in human T lymphocytes. J Cell Biol. 1994 May;125(3):639–649. doi: 10.1083/jcb.125.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindemann D., Wilhelm R., Renard P., Althage A., Zinkernagel R., Mous J. Severe immunodeficiency associated with a human immunodeficiency virus 1 NEF/3'-long terminal repeat transgene. J Exp Med. 1994 Mar 1;179(3):797–807. doi: 10.1084/jem.179.3.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller C. L., Burkhardt A. L., Lee J. H., Stealey B., Longnecker R., Bolen J. B., Kieff E. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity. 1995 Feb;2(2):155–166. doi: 10.1016/s1074-7613(95)80040-9. [DOI] [PubMed] [Google Scholar]
- Mizushima S., Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990 Sep 11;18(17):5322–5322. doi: 10.1093/nar/18.17.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olszowy M. W., Leuchtmann P. L., Veillette A., Shaw A. S. Comparison of p56lck and p59fyn protein expression in thymocyte subsets, peripheral T cells, NK cells, and lymphoid cell lines. J Immunol. 1995 Nov 1;155(9):4236–4240. [PubMed] [Google Scholar]
- Page S. T., van Oers N. S., Perlmutter R. M., Weiss A., Pullen A. M. Differential contribution of Lck and Fyn protein tyrosine kinases to intraepithelial lymphocyte development. Eur J Immunol. 1997 Feb;27(2):554–562. doi: 10.1002/eji.1830270229. [DOI] [PubMed] [Google Scholar]
- Pandori M. W., Fitch N. J., Craig H. M., Richman D. D., Spina C. A., Guatelli J. C. Producer-cell modification of human immunodeficiency virus type 1: Nef is a virion protein. J Virol. 1996 Jul;70(7):4283–4290. doi: 10.1128/jvi.70.7.4283-4290.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian D., Lev S., van Oers N. S., Dikic I., Schlessinger J., Weiss A. Tyrosine phosphorylation of Pyk2 is selectively regulated by Fyn during TCR signaling. J Exp Med. 1997 Apr 7;185(7):1253–1259. doi: 10.1084/jem.185.7.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian D., Weiss A. T cell antigen receptor signal transduction. Curr Opin Cell Biol. 1997 Apr;9(2):205–212. doi: 10.1016/s0955-0674(97)80064-6. [DOI] [PubMed] [Google Scholar]
- Ratner L., Niederman T. M. Nef. Curr Top Microbiol Immunol. 1995;193:169–208. doi: 10.1007/978-3-642-78929-8_10. [DOI] [PubMed] [Google Scholar]
- Robert-Guroff M., Popovic M., Gartner S., Markham P., Gallo R. C., Reitz M. S. Structure and expression of tat-, rev-, and nef-specific transcripts of human immunodeficiency virus type 1 in infected lymphocytes and macrophages. J Virol. 1990 Jul;64(7):3391–3398. doi: 10.1128/jvi.64.7.3391-3398.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saksela K., Cheng G., Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J. 1995 Feb 1;14(3):484–491. doi: 10.1002/j.1460-2075.1995.tb07024.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasseville V. G., Du Z., Chalifoux L. V., Pauley D. R., Young H. L., Sehgal P. K., Desrosiers R. C., Lackner A. A. Induction of lymphocyte proliferation and severe gastrointestinal disease in macaques by a nef gene variant SIVmac239. Am J Pathol. 1996 Jul;149(1):163–176. [PMC free article] [PubMed] [Google Scholar]
- Sawai E. T., Baur A. S., Peterlin B. M., Levy J. A., Cheng-Mayer C. A conserved domain and membrane targeting of Nef from HIV and SIV are required for association with a cellular serine kinase activity. J Biol Chem. 1995 Jun 23;270(25):15307–15314. doi: 10.1074/jbc.270.25.15307. [DOI] [PubMed] [Google Scholar]
- Sawai E. T., Baur A., Struble H., Peterlin B. M., Levy J. A., Cheng-Mayer C. Human immunodeficiency virus type 1 Nef associates with a cellular serine kinase in T lymphocytes. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1539–1543. doi: 10.1073/pnas.91.4.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schorr J., Kellner R., Fackler O., Freund J., Konvalinka J., Kienzle N., Kräusslich H. G., Mueller-Lantzsch N., Kalbitzer H. R. Specific cleavage sites of Nef proteins from human immunodeficiency virus types 1 and 2 for the viral proteases. J Virol. 1996 Dec;70(12):9051–9054. doi: 10.1128/jvi.70.12.9051-9054.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skowronski J., Parks D., Mariani R. Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene. EMBO J. 1993 Feb;12(2):703–713. doi: 10.1002/j.1460-2075.1993.tb05704.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith B. L., Krushelnycky B. W., Mochly-Rosen D., Berg P. The HIV nef protein associates with protein kinase C theta. J Biol Chem. 1996 Jul 12;271(28):16753–16757. doi: 10.1074/jbc.271.28.16753. [DOI] [PubMed] [Google Scholar]
- Straus D. B., Weiss A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell. 1992 Aug 21;70(4):585–593. doi: 10.1016/0092-8674(92)90428-f. [DOI] [PubMed] [Google Scholar]
- Swingler S., Gallay P., Camaur D., Song J., Abo A., Trono D. The Nef protein of human immunodeficiency virus type 1 enhances serine phosphorylation of the viral matrix. J Virol. 1997 Jun;71(6):4372–4377. doi: 10.1128/jvi.71.6.4372-4377.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welker R., Kottler H., Kalbitzer H. R., Kräusslich H. G. Human immunodeficiency virus type 1 Nef protein is incorporated into virus particles and specifically cleaved by the viral proteinase. Virology. 1996 May 1;219(1):228–236. doi: 10.1006/viro.1996.0240. [DOI] [PubMed] [Google Scholar]
- Willems L., Gatot J. S., Mammerickx M., Portetelle D., Burny A., Kerkhofs P., Kettmann R. The YXXL signalling motifs of the bovine leukemia virus transmembrane protein are required for in vivo infection and maintenance of high viral loads. J Virol. 1995 Jul;69(7):4137–4141. doi: 10.1128/jvi.69.7.4137-4141.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J., Katzav S., Weiss A. A functional T-cell receptor signaling pathway is required for p95vav activity. Mol Cell Biol. 1995 Aug;15(8):4337–4346. doi: 10.1128/mcb.15.8.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zazopoulos E., Haseltine W. A. Disulfide bond formation in the human immunodeficiency virus type 1 Nef protein. J Virol. 1993 Mar;67(3):1676–1680. doi: 10.1128/jvi.67.3.1676-1680.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Oers N. S., Killeen N., Weiss A. Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J Exp Med. 1996 Mar 1;183(3):1053–1062. doi: 10.1084/jem.183.3.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Oers N. S., Weiss A. The Syk/ZAP-70 protein tyrosine kinase connection to antigen receptor signalling processes. Semin Immunol. 1995 Aug;7(4):227–236. doi: 10.1006/smim.1995.0027. [DOI] [PubMed] [Google Scholar]