Abstract
Previous work has shown that three different mutations in domain 1 of the poliovirus receptor (Pvr), two in the predicted C'-C" ridge and one in the D-E loop, abolish binding of the P1/Mahoney strain. All three receptor defects could be suppressed by a mutation in the VP1 B-C loop of the viral capsid that was present in all 16 P1/Mahoney isolates adapted to the mutant receptors. To identify allele-specific mutations that enable poliovirus to utilize mutant receptors, and to understand the role of the VP1 B-C loop in adaptation, we selected mutant receptor-adapted viruses derived from two P1/Mahoney variants, one which lacks the VP1 B-C loop and one in which the VP1 B-C loop is replaced with the corresponding sequence from the P2/Lansing strain. Six adapted viral isolates were obtained after passage on mutant receptor-expressing cell lines. Sequence analysis revealed that each virus contained three to five mutations, and a total of 18 amino acid changes at 17 capsid residues were identified. Site-directed mutagenesis was used to evaluate the role of these mutations in adaptation to mutant Pvr. The results demonstrate that mutations in the viral canyon floor and rim are allele specific and compensate only for receptor defects in the C'-C" ridge of Pvr, suggesting that these sites interact in the virus-receptor complex. Furthermore, mutations in the VP1 E-F loop suppressed Pvr D-E loop defects, implying that the Pvr D-E loop contacts the VP1 E-F loop. Most of the other mutations mapped to interior capsid residues, some interacting with the fivefold- or threefold-related protomers. These mutations may regulate receptor interaction by controlling the structural flexibility of the viral capsid. In viruses lacking the VP1 B-C loop, single mutations were not sufficient to confer the adapted phenotype, in contrast to the 414 virus, which contains the B-C loop. Although the VP1 B-C loop appeared to be dispensable for adaptation, it may have provided a selective advantage in adaptation of P1/Mahoney to mutant Pvr.
Full Text
The Full Text of this article is available as a PDF (772.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Colston E. M., Racaniello V. R. Poliovirus variants selected on mutant receptor-expressing cells identify capsid residues that expand receptor recognition. J Virol. 1995 Aug;69(8):4823–4829. doi: 10.1128/jvi.69.8.4823-4829.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colston E., Racaniello V. R. Soluble receptor-resistant poliovirus mutants identify surface and internal capsid residues that control interaction with the cell receptor. EMBO J. 1994 Dec 15;13(24):5855–5862. doi: 10.1002/j.1460-2075.1994.tb06930.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couderc T., Guédo N., Calvez V., Pelletier I., Hogle J., Colbère-Garapin F., Blondel B. Substitutions in the capsids of poliovirus mutants selected in human neuroblastoma cells confer on the Mahoney type 1 strain a phenotype neurovirulent in mice. J Virol. 1994 Dec;68(12):8386–8391. doi: 10.1128/jvi.68.12.8386-8391.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couderc T., Martin A., Wychowski C., Girard M., Horaud F., Crainic R. Analysis of neutralization-escape mutants selected from a mouse virulent type 1/type 2 chimeric poliovirus: identification of a type 1 poliovirus with antigenic site 1 deleted. J Gen Virol. 1991 Apr;72(Pt 4):973–977. doi: 10.1099/0022-1317-72-4-973. [DOI] [PubMed] [Google Scholar]
- Filman D. J., Syed R., Chow M., Macadam A. J., Minor P. D., Hogle J. M. Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J. 1989 May;8(5):1567–1579. doi: 10.1002/j.1460-2075.1989.tb03541.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogle J. M., Chow M., Filman D. J. Three-dimensional structure of poliovirus at 2.9 A resolution. Science. 1985 Sep 27;229(4720):1358–1365. doi: 10.1126/science.2994218. [DOI] [PubMed] [Google Scholar]
- La Monica N., Kupsky W. J., Racaniello V. R. Reduced mouse neurovirulence of poliovirus type 2 Lansing antigenic variants selected with monoclonal antibodies. Virology. 1987 Dec;161(2):429–437. doi: 10.1016/0042-6822(87)90136-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin A., Wychowski C., Couderc T., Crainic R., Hogle J., Girard M. Engineering a poliovirus type 2 antigenic site on a type 1 capsid results in a chimaeric virus which is neurovirulent for mice. EMBO J. 1988 Sep;7(9):2839–2847. doi: 10.1002/j.1460-2075.1988.tb03140.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelsohn C. L., Wimmer E., Racaniello V. R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989 Mar 10;56(5):855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
- Morrison M. E., He Y. J., Wien M. W., Hogle J. M., Racaniello V. R. Homolog-scanning mutagenesis reveals poliovirus receptor residues important for virus binding and replication. J Virol. 1994 Apr;68(4):2578–2588. doi: 10.1128/jvi.68.4.2578-2588.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss E. G., Racaniello V. R. Host range determinants located on the interior of the poliovirus capsid. EMBO J. 1991 May;10(5):1067–1074. doi: 10.1002/j.1460-2075.1991.tb08046.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosser A. G., Rueckert R. R. WIN 51711-dependent mutants of poliovirus type 3: evidence that virions decay after release from cells unless drug is present. J Virol. 1993 Mar;67(3):1246–1254. doi: 10.1128/jvi.67.3.1246-1254.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosser A. G., Sgro J. Y., Rueckert R. R. Distribution of drug resistance mutations in type 3 poliovirus identifies three regions involved in uncoating functions. J Virol. 1994 Dec;68(12):8193–8201. doi: 10.1128/jvi.68.12.8193-8201.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray M. G., Bradley J., Yang X. F., Wimmer E., Moss E. G., Racaniello V. R. Poliovirus host range is determined by a short amino acid sequence in neutralization antigenic site I. Science. 1988 Jul 8;241(4862):213–215. doi: 10.1126/science.2838906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Racaniello V. R., Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science. 1981 Nov 20;214(4523):916–919. doi: 10.1126/science.6272391. [DOI] [PubMed] [Google Scholar]
- Racaniello V. R., Baltimore D. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4887–4891. doi: 10.1073/pnas.78.8.4887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeates T. O., Jacobson D. H., Martin A., Wychowski C., Girard M., Filman D. J., Hogle J. M. Three-dimensional structure of a mouse-adapted type 2/type 1 poliovirus chimera. EMBO J. 1991 Sep;10(9):2331–2341. doi: 10.1002/j.1460-2075.1991.tb07772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]