Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):9792–9795. doi: 10.1128/jvi.71.12.9792-9795.1997

Antiviral determinants of rat Mx GTPases map to the carboxy-terminal half.

L Johannes 1, R Kambadur 1, H Lee-Hellmich 1, C A Hodgkinson 1, H Arnheiter 1, E Meier 1
PMCID: PMC230291  PMID: 9371647

Abstract

Rat Mx2 and rat Mx3 are two alpha/beta interferon-inducible cytoplasmic GTPases that differ in three residues in the amino-terminal third, which also contains the tripartite GTP-binding domain, and that differ in five residues in the carboxy-terminal quarter, which also contains a dimerization domain. While Mx2 is active against vesicular stomatitis virus (VSV), Mx3 lacks antiviral activity. We mapped the functional difference between Mx2 and Mx3 protein to two critical residues in the carboxy-terminal parts of the molecules. An exchange of either residue 588 or 630 of Mx2 with the corresponding residues of Mx3 abolished anti-VSV activity, and the introduction of the two Mx2 residues on an Mx3 background partially restored anti-VSV activity. These results are consistent with the facts that Mx2 and Mx3 have similar intrinsic GTPase activities and that the GTPase domain of Mx3 can fully substitute for the GTPase domain of Mx2. Nevertheless, the amino-terminal third containing the GTP-binding domain is necessary for antiviral activity, since an amino-terminally truncated Mx2 protein is devoid of anti-VSV activity. Furthermore, Fab fragments of a monoclonal antibody known to neutralize antiviral activity block GTPase activity by binding an epitope in the carboxy-terminal half of Mx2 or Mx3 protein. The results are consistent with a two-domain model in which both the conserved amino-terminal half and the less-well-conserved carboxy-terminal half of Mx proteins carry functionally important domains.

Full Text

The Full Text of this article is available as a PDF (750.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi M., Fäh J., Hurt N., Samuel C. E., Thomis D., Bazzigher L., Pavlovic J., Haller O., Staeheli P. cDNA structures and regulation of two interferon-induced human Mx proteins. Mol Cell Biol. 1989 Nov;9(11):5062–5072. doi: 10.1128/mcb.9.11.5062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnheiter H., Dubois-Dalcq M., Lazzarini R. A. Direct visualization of protein transport and processing in the living cell by microinjection of specific antibodies. Cell. 1984 Nov;39(1):99–109. doi: 10.1016/0092-8674(84)90195-8. [DOI] [PubMed] [Google Scholar]
  3. Arnheiter H., Frese M., Kambadur R., Meier E., Haller O. Mx transgenic mice--animal models of health. Curr Top Microbiol Immunol. 1996;206:119–147. doi: 10.1007/978-3-642-85208-4_8. [DOI] [PubMed] [Google Scholar]
  4. Arnheiter H., Haller O. Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins. EMBO J. 1988 May;7(5):1315–1320. doi: 10.1002/j.1460-2075.1988.tb02946.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arnheiter H., Skuntz S., Noteborn M., Chang S., Meier E. Transgenic mice with intracellular immunity to influenza virus. Cell. 1990 Jul 13;62(1):51–61. doi: 10.1016/0092-8674(90)90239-b. [DOI] [PubMed] [Google Scholar]
  6. Arnheiter H., Staeheli P. Expression of interferon dependent resistance to influenza virus in mouse embryo cells. Arch Virol. 1983;76(2):127–137. doi: 10.1007/BF01311696. [DOI] [PubMed] [Google Scholar]
  7. Bazzigher L., Schwarz A., Staeheli P. No enhanced influenza virus resistance of murine and avian cells expressing cloned duck Mx protein. Virology. 1993 Jul;195(1):100–112. doi: 10.1006/viro.1993.1350. [DOI] [PubMed] [Google Scholar]
  8. Bernasconi D., Schultz U., Staeheli P. The interferon-induced Mx protein of chickens lacks antiviral activity. J Interferon Cytokine Res. 1995 Jan;15(1):47–53. doi: 10.1089/jir.1995.15.47. [DOI] [PubMed] [Google Scholar]
  9. Dreiding P., Staeheli P., Haller O. Interferon-induced protein Mx accumulates in nuclei of mouse cells expressing resistance to influenza viruses. Virology. 1985 Jan 15;140(1):192–196. doi: 10.1016/0042-6822(85)90460-x. [DOI] [PubMed] [Google Scholar]
  10. Garber E. A., Hreniuk D. L., Scheidel L. M., van der Ploeg L. H. Mutations in murine Mx1: effects on localization and antiviral activity. Virology. 1993 Jun;194(2):715–723. doi: 10.1006/viro.1993.1312. [DOI] [PubMed] [Google Scholar]
  11. Haller O., Frese M., Rost D., Nuttall P. A., Kochs G. Tick-borne thogoto virus infection in mice is inhibited by the orthomyxovirus resistance gene product Mx1. J Virol. 1995 Apr;69(4):2596–2601. doi: 10.1128/jvi.69.4.2596-2601.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horisberger M. A., Gunst M. C. Interferon-induced proteins: identification of Mx proteins in various mammalian species. Virology. 1991 Jan;180(1):185–190. doi: 10.1016/0042-6822(91)90022-4. [DOI] [PubMed] [Google Scholar]
  13. Horisberger M. A. Interferon-induced human protein MxA is a GTPase which binds transiently to cellular proteins. J Virol. 1992 Aug;66(8):4705–4709. doi: 10.1128/jvi.66.8.4705-4709.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johannes L., Arnheiter H., Meier E. Switch in antiviral specificity of a GTPase upon translocation from the cytoplasm to the nucleus. J Virol. 1993 Mar;67(3):1653–1657. doi: 10.1128/jvi.67.3.1653-1657.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meier E., Fäh J., Grob M. S., End R., Staeheli P., Haller O. A family of interferon-induced Mx-related mRNAs encodes cytoplasmic and nuclear proteins in rat cells. J Virol. 1988 Jul;62(7):2386–2393. doi: 10.1128/jvi.62.7.2386-2393.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meier E., Kunz G., Haller O., Arnheiter H. Activity of rat Mx proteins against a rhabdovirus. J Virol. 1990 Dec;64(12):6263–6269. doi: 10.1128/jvi.64.12.6263-6269.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Melén K., Julkunen I. Mutational analysis of murine Mx1 protein: GTP binding core domain is essential for anti-influenza A activity. Virology. 1994 Nov 15;205(1):269–279. doi: 10.1006/viro.1994.1643. [DOI] [PubMed] [Google Scholar]
  18. Melén K., Ronni T., Broni B., Krug R. M., von Bonsdorff C. H., Julkunen I. Interferon-induced Mx proteins form oligomers and contain a putative leucine zipper. J Biol Chem. 1992 Dec 25;267(36):25898–25907. [PubMed] [Google Scholar]
  19. Melén K., Ronni T., Lotta T., Julkunen I. Enzymatic characterization of interferon-induced antiviral GTPases murine Mx1 and human MxA proteins. J Biol Chem. 1994 Jan 21;269(3):2009–2015. [PubMed] [Google Scholar]
  20. Nakayama M., Nagata K., Ishihama A. Enzymatic properties of the mouse Mx1 protein-associated GTPase. Virus Res. 1992 Mar;22(3):227–234. doi: 10.1016/0168-1702(92)90054-d. [DOI] [PubMed] [Google Scholar]
  21. Nakayama M., Nagata K., Kato A., Ishihama A. Interferon-inducible mouse Mx1 protein that confers resistance to influenza virus is GTPase. J Biol Chem. 1991 Nov 15;266(32):21404–21408. [PubMed] [Google Scholar]
  22. Pavlovic J., Haller O., Staeheli P. Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle. J Virol. 1992 Apr;66(4):2564–2569. doi: 10.1128/jvi.66.4.2564-2569.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pavlovic J., Zürcher T., Haller O., Staeheli P. Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J Virol. 1990 Jul;64(7):3370–3375. doi: 10.1128/jvi.64.7.3370-3375.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pitossi F., Blank A., Schröder A., Schwarz A., Hüssi P., Schwemmle M., Pavlovic J., Staeheli P. A functional GTP-binding motif is necessary for antiviral activity of Mx proteins. J Virol. 1993 Nov;67(11):6726–6732. doi: 10.1128/jvi.67.11.6726-6732.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ponten A., Sick C., Weeber M., Haller O., Kochs G. Dominant-negative mutants of human MxA protein: domains in the carboxy-terminal moiety are important for oligomerization and antiviral activity. J Virol. 1997 Apr;71(4):2591–2599. doi: 10.1128/jvi.71.4.2591-2599.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Richter M. F., Schwemmle M., Herrmann C., Wittinghofer A., Staeheli P. Interferon-induced MxA protein. GTP binding and GTP hydrolysis properties. J Biol Chem. 1995 Jun 2;270(22):13512–13517. [PubMed] [Google Scholar]
  27. Schwemmle M., Richter M. F., Herrmann C., Nassar N., Staeheli P. Unexpected structural requirements for GTPase activity of the interferon-induced MxA protein. J Biol Chem. 1995 Jun 2;270(22):13518–13523. [PubMed] [Google Scholar]
  28. Schwemmle M., Weining K. C., Richter M. F., Schumacher B., Staeheli P. Vesicular stomatitis virus transcription inhibited by purified MxA protein. Virology. 1995 Jan 10;206(1):545–554. doi: 10.1016/s0042-6822(95)80071-9. [DOI] [PubMed] [Google Scholar]
  29. Staeheli P., Dreiding P., Haller O., Lindenmann J. Polyclonal and monoclonal antibodies to the interferon-inducible protein Mx of influenza virus-resistant mice. J Biol Chem. 1985 Feb 10;260(3):1821–1825. [PubMed] [Google Scholar]
  30. Staeheli P., Grob R., Meier E., Sutcliffe J. G., Haller O. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol Cell Biol. 1988 Oct;8(10):4518–4523. doi: 10.1128/mcb.8.10.4518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zürcher T., Pavlovic J., Staeheli P. Mechanism of human MxA protein action: variants with changed antiviral properties. EMBO J. 1992 Apr;11(4):1657–1661. doi: 10.1002/j.1460-2075.1992.tb05212.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES