Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):9800–9802. doi: 10.1128/jvi.71.12.9800-9802.1997

Involvement of a subgenomic mRNA in the generation of a variable population of defective citrus tristeza virus molecules.

G Yang 1, M Mawassi 1, R Gofman 1, R Gafny 1, M Bar-Joseph 1
PMCID: PMC230293  PMID: 9371649

Abstract

The fusion sites between the termini of naturally occurring defective RNAs (D-RNAs) from three citrus tristeza virus (CTV) isolates were sequenced. Seven of eight clones showed a common 3' terminus of 940 nucleotides (nt) fused to 5' termini with different sizes. An extra cytosine nucleotide was found at the junction site of the majority of the common 3' D-RNAs. Molecular analysis of the plus and minus strands of the 0.9-kbp double-stranded RNA, corresponding to the CTV open reading frame 11 subgenomic RNA (sgRNA), showed that they were identical in length and sequence to the common 3' sequence of the D-RNAs. These results imply that viral sgRNA messengers also function as building components for genomic rearrangement and exchange of complete viral genes.

Full Text

The Full Text of this article is available as a PDF (142.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agranovsky A. A. Principles of molecular organization, expression, and evolution of closteroviruses: over the barriers. Adv Virus Res. 1996;47:119–158. doi: 10.1016/S0065-3527(08)60735-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hilf M. E., Karasev A. V., Pappu H. R., Gumpf D. J., Niblett C. L., Garnsey S. M. Characterization of citrus tristeza virus subgenomic RNAs in infected tissue. Virology. 1995 Apr 20;208(2):576–582. doi: 10.1006/viro.1995.1188. [DOI] [PubMed] [Google Scholar]
  4. Karasev A. V., Boyko V. P., Gowda S., Nikolaeva O. V., Hilf M. E., Koonin E. V., Niblett C. L., Cline K., Gumpf D. J., Lee R. F. Complete sequence of the citrus tristeza virus RNA genome. Virology. 1995 Apr 20;208(2):511–520. doi: 10.1006/viro.1995.1182. [DOI] [PubMed] [Google Scholar]
  5. Karasev A. V., Hilf M. E., Garnsey S. M., Dawson W. O. Transcriptional strategy of closteroviruses: mapping the 5' termini of the citrus tristeza virus subgenomic RNAs. J Virol. 1997 Aug;71(8):6233–6236. doi: 10.1128/jvi.71.8.6233-6236.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kirkwood T. B., Bangham C. R. Cycles, chaos, and evolution in virus cultures: a model of defective interfering particles. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8685–8689. doi: 10.1073/pnas.91.18.8685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lai M. M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992 Mar;56(1):61–79. doi: 10.1128/mr.56.1.61-79.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mawassi M., Gafny R., Gagliardi D., Bar-Joseph M. Populations of citrus tristeza virus contain smaller-than-full-length particles which encapsidate sub-genomic RNA molecules. J Gen Virol. 1995 Mar;76(Pt 3):651–659. doi: 10.1099/0022-1317-76-3-651. [DOI] [PubMed] [Google Scholar]
  9. Mawassi M., Karasev A. V., Mietkiewska E., Gafny R., Lee R. F., Dawson W. O., Bar-Joseph M. Defective RNA molecules associated with citrus tristeza virus. Virology. 1995 Apr 1;208(1):383–387. doi: 10.1006/viro.1995.1165. [DOI] [PubMed] [Google Scholar]
  10. Mawassi M., Mietkiewska E., Gofman R., Yang G., Bar-Joseph M. Unusual sequence relationships between two isolates of citrus tristeza virus. J Gen Virol. 1996 Sep;77(Pt 9):2359–2364. doi: 10.1099/0022-1317-77-9-2359. [DOI] [PubMed] [Google Scholar]
  11. Mawassi M., Mietkiewska E., Hilf M. E., Ashoulin L., Karasev A. V., Gafny R., Lee R. F., Garnsey S. M., Dawson W. O., Bar-Joseph M. Multiple species of defective RNAs in plants infected with citrus tristeza virus. Virology. 1995 Dec 1;214(1):264–268. doi: 10.1006/viro.1995.9930. [DOI] [PubMed] [Google Scholar]
  12. Sawicki S. G., Sawicki D. L. Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J Virol. 1990 Mar;64(3):1050–1056. doi: 10.1128/jvi.64.3.1050-1056.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wengler G., Wengler G., Gross H. S. Replicative form of Semliki Forest virus RNA contains an unpaired guanosine. Nature. 1979 Dec 13;282(5740):754–756. doi: 10.1038/282754a0. [DOI] [PubMed] [Google Scholar]
  14. Wu G., Kaper J. M. Requirement of 3'-terminal guanosine in (-)-stranded RNA for in vitro replication of cucumber mosaic virus satellite RNA by viral RNA-dependent RNA polymerase. J Mol Biol. 1994 May 20;238(5):655–657. doi: 10.1006/jmbi.1994.1326. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES