Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Dec;71(12):9813–9816. doi: 10.1128/jvi.71.12.9813-9816.1997

Efficient neutralization of foot-and-mouth disease virus by monovalent antibody binding.

N Verdaguer 1, I Fita 1, E Domingo 1, M G Mateu 1
PMCID: PMC230296  PMID: 9371652

Abstract

Neutralization of an aphthovirus by monovalent binding of an antibody is reported. Foot-and-mouth disease virus (FMDV) clone C-S8c1 was neutralized by monoclonal antibody (MAb) SD6, which was directed to a continuous epitope within a major antigenic site of the G-H loop of capsid protein VP1. On a molar basis, the Fab fragment was at most fivefold less active in neutralization than the intact antibody, and both blocked virus attachment to cells. Neither the antibody nor the Fab fragment caused aggregation of virions, as evidenced by sucrose gradient sedimentation studies of the antibody-virus complex formed at antibody to virion ratios of 1:50 to 1:10,000. The results of neutralization of infectivity and of ultracentrifugation are fully consistent with structural data based on X-ray crystallographic and cryoelectron microscopy studies, which showed monovalent interaction of the antibody with a critical receptor binding motif Arg-Gly-Asp. The conclusions of these neutralization studies are that (i) bivalent binding of antibody is not a requisite for strong neutralization of aphthoviruses and (ii) aggregation of viral particles, which has been proposed to be the dominant neutralization mechanism of antibodies that bind monovalently to virions, is not necessary for the neutralization of FMDV C-S8c1 by MAb SD6.

Full Text

The Full Text of this article is available as a PDF (108.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature. 1989 Feb 23;337(6209):709–716. doi: 10.1038/337709a0. [DOI] [PubMed] [Google Scholar]
  2. Baxt B., Morgan D. O., Robertson B. H., Timpone C. A. Epitopes on foot-and-mouth disease virus outer capsid protein VP1 involved in neutralization and cell attachment. J Virol. 1984 Aug;51(2):298–305. doi: 10.1128/jvi.51.2.298-305.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berinstein A., Roivainen M., Hovi T., Mason P. W., Baxt B. Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virol. 1995 Apr;69(4):2664–2666. doi: 10.1128/jvi.69.4.2664-2666.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colonno R. J., Callahan P. L., Leippe D. M., Rueckert R. R., Tomassini J. E. Inhibition of rhinovirus attachment by neutralizing monoclonal antibodies and their Fab fragments. J Virol. 1989 Jan;63(1):36–42. doi: 10.1128/jvi.63.1.36-42.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Domingo E., Escarmis C., Martinez M. A., Martinez-Salas E., Mateu M. G. Foot-and-mouth disease virus populations are quasispecies. Curr Top Microbiol Immunol. 1992;176:33–47. doi: 10.1007/978-3-642-77011-1_3. [DOI] [PubMed] [Google Scholar]
  6. Fox G., Parry N. R., Barnett P. V., McGinn B., Rowlands D. J., Brown F. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Virol. 1989 Mar;70(Pt 3):625–637. doi: 10.1099/0022-1317-70-3-625. [DOI] [PubMed] [Google Scholar]
  7. Hernández J., Valero M. L., Andreu D., Domingo E., Mateu M. G. Antibody and host cell recognition of foot-and-mouth disease virus (serotype C) cleaved at the Arg-Gly-Asp (RGD) motif: a structural interpretation. J Gen Virol. 1996 Feb;77(Pt 2):257–264. doi: 10.1099/0022-1317-77-2-257. [DOI] [PubMed] [Google Scholar]
  8. Hewat E. A., Blaas D. Structure of a neutralizing antibody bound bivalently to human rhinovirus 2. EMBO J. 1996 Apr 1;15(7):1515–1523. [PMC free article] [PubMed] [Google Scholar]
  9. Hewat E. A., Verdaguer N., Fita I., Blakemore W., Brookes S., King A., Newman J., Domingo E., Mateu M. G., Stuart D. I. Structure of the complex of an Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: positioning of a highly mobile antigenic loop. EMBO J. 1997 Apr 1;16(7):1492–1500. doi: 10.1093/emboj/16.7.1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lea S., Hernández J., Blakemore W., Brocchi E., Curry S., Domingo E., Fry E., Abu-Ghazaleh R., King A., Newman J. The structure and antigenicity of a type C foot-and-mouth disease virus. Structure. 1994 Feb 15;2(2):123–139. doi: 10.1016/s0969-2126(00)00014-9. [DOI] [PubMed] [Google Scholar]
  11. Logan D., Abu-Ghazaleh R., Blakemore W., Curry S., Jackson T., King A., Lea S., Lewis R., Newman J., Parry N. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature. 1993 Apr 8;362(6420):566–568. doi: 10.1038/362566a0. [DOI] [PubMed] [Google Scholar]
  12. Martínez M. A., Carrillo C., González-Candelas F., Moya A., Domingo E., Sobrino F. Fitness alteration of foot-and-mouth disease virus mutants: measurement of adaptability of viral quasispecies. J Virol. 1991 Jul;65(7):3954–3957. doi: 10.1128/jvi.65.7.3954-3957.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martínez M. A., Verdaguer N., Mateu M. G., Domingo E. Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6798–6802. doi: 10.1073/pnas.94.13.6798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mason P. W., Rieder E., Baxt B. RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1932–1936. doi: 10.1073/pnas.91.5.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mateu M. G., Andreu D., Domingo E. Antibodies raised in a natural host and monoclonal antibodies recognize similar antigenic features of foot-and-mouth disease virus. Virology. 1995 Jun 20;210(1):120–127. doi: 10.1006/viro.1995.1323. [DOI] [PubMed] [Google Scholar]
  16. Mateu M. G. Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Res. 1995 Sep;38(1):1–24. doi: 10.1016/0168-1702(95)00048-u. [DOI] [PubMed] [Google Scholar]
  17. Mateu M. G., Martínez M. A., Rocha E., Andreu D., Parejo J., Giralt E., Sobrino F., Domingo E. Implications of a quasispecies genome structure: effect of frequent, naturally occurring amino acid substitutions on the antigenicity of foot-and-mouth disease virus. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5883–5887. doi: 10.1073/pnas.86.15.5883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mateu M. G., Rocha E., Vicente O., Vayreda F., Navalpotro C., Andreu D., Pedroso E., Giralt E., Enjuanes L., Domingo E. Reactivity with monoclonal antibodies of viruses from an episode of foot-and-mouth disease. Virus Res. 1987 Sep;8(3):261–274. doi: 10.1016/0168-1702(87)90020-7. [DOI] [PubMed] [Google Scholar]
  19. Mateu M. G., Valero M. L., Andreu D., Domingo E. Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus and effect on cell recognition. J Biol Chem. 1996 May 31;271(22):12814–12819. doi: 10.1074/jbc.271.22.12814. [DOI] [PubMed] [Google Scholar]
  20. McCullough K. C., De Simone F., Brocchi E., Capucci L., Crowther J. R., Kihm U. Protective immune response against foot-and-mouth disease. J Virol. 1992 Apr;66(4):1835–1840. doi: 10.1128/jvi.66.4.1835-1840.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Novella I. S., Borrego B., Mateu M. G., Domingo E., Giralt E., Andreu D. Use of substituted and tandem-repeated peptides to probe the relevance of the highly conserved RGD tripeptide in the immune response against foot-and-mouth disease virus. FEBS Lett. 1993 Sep 20;330(3):253–259. doi: 10.1016/0014-5793(93)80883-v. [DOI] [PubMed] [Google Scholar]
  22. Parry N., Fox G., Rowlands D., Brown F., Fry E., Acharya R., Logan D., Stuart D. Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus. Nature. 1990 Oct 11;347(6293):569–572. doi: 10.1038/347569a0. [DOI] [PubMed] [Google Scholar]
  23. Smith T. J., Chase E. S., Schmidt T. J., Olson N. H., Baker T. S. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature. 1996 Sep 26;383(6598):350–354. doi: 10.1038/383350a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith T. J., Olson N. H., Cheng R. H., Chase E. S., Baker T. S. Structure of a human rhinovirus-bivalently bound antibody complex: implications for viral neutralization and antibody flexibility. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7015–7018. doi: 10.1073/pnas.90.15.7015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith T. J., Olson N. H., Cheng R. H., Liu H., Chase E. S., Lee W. M., Leippe D. M., Mosser A. G., Rueckert R. R., Baker T. S. Structure of human rhinovirus complexed with Fab fragments from a neutralizing antibody. J Virol. 1993 Mar;67(3):1148–1158. doi: 10.1128/jvi.67.3.1148-1158.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sobrino F., Dávila M., Ortín J., Domingo E. Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology. 1983 Jul 30;128(2):310–318. doi: 10.1016/0042-6822(83)90258-1. [DOI] [PubMed] [Google Scholar]
  27. Tormo J., Centeno N. B., Fontana E., Bubendorfer T., Fita I., Blaas D. Docking of a human rhinovirus neutralizing antibody onto the viral capsid. Proteins. 1995 Dec;23(4):491–501. doi: 10.1002/prot.340230404. [DOI] [PubMed] [Google Scholar]
  28. Verdaguer N., Mateu M. G., Andreu D., Giralt E., Domingo E., Fita I. Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J. 1995 Apr 18;14(8):1690–1696. doi: 10.1002/j.1460-2075.1995.tb07158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Verdaguer N., Mateu M. G., Bravo J., Tormo J., Giralt E., Andreu D., Domingo E., Fita I. Crystallization and preliminary X-ray diffraction studies of a monoclonal antibody Fab fragment against foot-and-mouth disease virus and of its complex with the main antigenic site peptide. Proteins. 1994 Feb;18(2):201–203. doi: 10.1002/prot.340180212. [DOI] [PubMed] [Google Scholar]
  30. Wetz K., Willingmann P., Zeichhardt H., Habermehl K. O. Neutralization of poliovirus by polyclonal antibodies requires binding of a single IgG molecule per virion. Arch Virol. 1986;91(3-4):207–220. doi: 10.1007/BF01314281. [DOI] [PubMed] [Google Scholar]
  31. Wien M. W., Filman D. J., Stura E. A., Guillot S., Delpeyroux F., Crainic R., Hogle J. M. Structure of the complex between the Fab fragment of a neutralizing antibody for type 1 poliovirus and its viral epitope. Nat Struct Biol. 1995 Mar;2(3):232–243. doi: 10.1038/nsb0395-232. [DOI] [PubMed] [Google Scholar]
  32. Wild T. F., Brown F. Nature of the inactivating action of trypsin on foot-and-mouth disease virus. J Gen Virol. 1967 Apr;1(2):247–250. doi: 10.1099/0022-1317-1-2-247. [DOI] [PubMed] [Google Scholar]
  33. Wild T. F., Burroughs J. N., Brown F. Surface structure of foot-and-mouth disease virus. J Gen Virol. 1969 Apr;4(3):313–320. doi: 10.1099/0022-1317-4-3-313. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES