Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 May;15(5):2547–2557. doi: 10.1128/mcb.15.5.2547

Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens.

Y W Lee 1, C B Klein 1, B Kargacin 1, K Salnikow 1, J Kitahara 1, K Dowjat 1, A Zhitkovich 1, N T Christie 1, M Costa 1
PMCID: PMC230485  PMID: 7537850

Abstract

A transgenic gpt+ Chinese hamster cell line (G12) was found to be susceptible to carcinogenic nickel-induced inactivation of gpt expression without mutagenesis or deletion of the transgene. Many nickel-induced 6-thioguanine-resistant variants spontaneously reverted to actively express gpt, as indicated by both reversion assays and direct enzyme measurements. Since reversion was enhanced in many of the nickel-induced variant cell lines following 24-h treatment with the demethylating agent 5-azacytidine, the involvement of DNA methylation in silencing gpt expression was suspected. This was confirmed by demonstrations of increased DNA methylation, as well as by evidence indicating condensed chromatin and heterochromatinization of the gpt integration site in 6-thioguanine-resistant cells. Upon reversion to active gpt expression, DNA methylation and condensation are lost. We propose that DNA condensation and methylation result in heterochromatinization of the gpt sequence with subsequent inheritance of the now silenced gene. This mechanism is supported by direct evidence showing that acute nickel treatment of cultured cells, and of isolated nuclei in vitro, can indeed facilitate gpt sequence-specific chromatin condensation. Epigenetic mechanisms have been implicated in the actions of some nonmutagenic carcinogens, and DNA methylation changes are now known to be important in carcinogenesis. This paper further supports the emerging theory that nickel is a human carcinogen that can alter gene expression by enhanced DNA methylation and compaction, rather than by mutagenic mechanisms.

Full Text

The Full Text of this article is available as a PDF (435.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amacher D. E., Paillet S. C. Induction of trifluorothymidine-resistant mutants by metal ions in L5178Y/TK+/- cells. Mutat Res. 1980 Jul;78(3):279–288. doi: 10.1016/0165-1218(80)90110-x. [DOI] [PubMed] [Google Scholar]
  2. Antequera F., Boyes J., Bird A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell. 1990 Aug 10;62(3):503–514. doi: 10.1016/0092-8674(90)90015-7. [DOI] [PubMed] [Google Scholar]
  3. Antequera F., Macleod D., Bird A. P. Specific protection of methylated CpGs in mammalian nuclei. Cell. 1989 Aug 11;58(3):509–517. doi: 10.1016/0092-8674(89)90431-5. [DOI] [PubMed] [Google Scholar]
  4. Arrighi F. E., Hsu T. C., Pathak S., Sawada H. The sex chromosomes of the Chinese hamster: constitutive heterochromatin deficient in repetitive DNA sequences. Cytogenet Cell Genet. 1974;13(3):268–274. doi: 10.1159/000130278. [DOI] [PubMed] [Google Scholar]
  5. Becker P., Renkawitz R., Schütz G. Tissue-specific DNaseI hypersensitive sites in the 5'-flanking sequences of the tryptophan oxygenase and the tyrosine aminotransferase genes. EMBO J. 1984 Sep;3(9):2015–2020. doi: 10.1002/j.1460-2075.1984.tb02084.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Behe M., Felsenfeld G. Effects of methylation on a synthetic polynucleotide: the B--Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci U S A. 1981 Mar;78(3):1619–1623. doi: 10.1073/pnas.78.3.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Biggart N. W., Costa M. Assessment of the uptake and mutagenicity of nickel chloride in salmonella tester strains. Mutat Res. 1986 Dec;175(4):209–215. doi: 10.1016/0165-7992(86)90056-4. [DOI] [PubMed] [Google Scholar]
  8. Bird A. The essentials of DNA methylation. Cell. 1992 Jul 10;70(1):5–8. doi: 10.1016/0092-8674(92)90526-i. [DOI] [PubMed] [Google Scholar]
  9. Borochov N., Ausio J., Eisenberg H. Interaction and conformational changes of chromatin with divalent ions. Nucleic Acids Res. 1984 Apr 11;12(7):3089–3096. doi: 10.1093/nar/12.7.3089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bourtayre P., Pizzorni L., Liquier J., Taboury J., Taillandier E., Labarre J. F. Z-form induction in DNA by carcinogenic nickel compounds: an optical spectroscopy study. IARC Sci Publ. 1984;(53):227–234. [PubMed] [Google Scholar]
  11. Cedar H., Razin A. DNA methylation and development. Biochim Biophys Acta. 1990 May 24;1049(1):1–8. doi: 10.1016/0167-4781(90)90076-e. [DOI] [PubMed] [Google Scholar]
  12. Conway K., Costa M. Nonrandom chromosomal alterations in nickel-transformed Chinese hamster embryo cells. Cancer Res. 1989 Nov 1;49(21):6032–6038. [PubMed] [Google Scholar]
  13. Cook K. R., Karpen G. H. A rosy future for heterochromatin. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5219–5221. doi: 10.1073/pnas.91.12.5219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cooper G. E., Khattar N. H., Bishop P. L., Turker M. S. At least two distinct epigenetic mechanisms are correlated with high-frequency "switching" for APRT phenotypic expression in mouse embryonal carcinoma stem cells. Somat Cell Mol Genet. 1992 May;18(3):215–225. doi: 10.1007/BF01233858. [DOI] [PubMed] [Google Scholar]
  15. Costa M. Molecular mechanisms of nickel carcinogenesis. Annu Rev Pharmacol Toxicol. 1991;31:321–337. doi: 10.1146/annurev.pa.31.040191.001541. [DOI] [PubMed] [Google Scholar]
  16. Costa M., Zhuang Z., Huang X., Cosentino S., Klein C. B., Salnikow K. Molecular mechanisms of nickel carcinogenesis. Sci Total Environ. 1994 Jun 6;148(2-3):191–199. doi: 10.1016/0048-9697(94)90396-4. [DOI] [PubMed] [Google Scholar]
  17. Davies R. L., Fuhrer-Krusi S., Kucherlapati R. S. Modulation of transfected gene expression mediated by changes in chromatin structure. Cell. 1982 Dec;31(3 Pt 2):521–529. doi: 10.1016/0092-8674(82)90308-7. [DOI] [PubMed] [Google Scholar]
  18. Feinberg A. P. Genomic imprinting and gene activation in cancer. Nat Genet. 1993 Jun;4(2):110–113. doi: 10.1038/ng0693-110. [DOI] [PubMed] [Google Scholar]
  19. Fenwick R. G., Jr Reversion of a mutation affecting the molecular weight of HGPRT: intragenic suppression and localization of X-linked genes. Somatic Cell Genet. 1980 Jul;6(4):477–494. doi: 10.1007/BF01539151. [DOI] [PubMed] [Google Scholar]
  20. Fox M., Rossiter B. J., Brennand J. Different mechanisms of reversion of HPRT-deficient V79 Chinese hamster cells. Mutagenesis. 1988 Jan;3(1):15–21. doi: 10.1093/mutage/3.1.15. [DOI] [PubMed] [Google Scholar]
  21. Gebara M. M., Drevon C., Harcourt S. A., Steingrimsdottir H., James M. R., Burke J. F., Arlett C. F., Lehmann A. R. Inactivation of a transfected gene in human fibroblasts can occur by deletion, amplification, phenotypic switching, or methylation. Mol Cell Biol. 1987 Apr;7(4):1459–1464. doi: 10.1128/mcb.7.4.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Greger V., Debus N., Lohmann D., Höpping W., Passarge E., Horsthemke B. Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Hum Genet. 1994 Nov;94(5):491–496. doi: 10.1007/BF00211013. [DOI] [PubMed] [Google Scholar]
  23. Hansen R. S., Gartler S. M., Scott C. R., Chen S. H., Laird C. D. Methylation analysis of CGG sites in the CpG island of the human FMR1 gene. Hum Mol Genet. 1992 Nov;1(8):571–578. doi: 10.1093/hmg/1.8.571. [DOI] [PubMed] [Google Scholar]
  24. Harris M. Induction of thymidine kinase in enzyme-deficient Chinese hamster cells. Cell. 1982 Jun;29(2):483–492. doi: 10.1016/0092-8674(82)90165-9. [DOI] [PubMed] [Google Scholar]
  25. Herman J. G., Latif F., Weng Y., Lerman M. I., Zbar B., Liu S., Samid D., Duan D. S., Gnarra J. R., Linehan W. M. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9700–9704. doi: 10.1073/pnas.91.21.9700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Holliday R. The inheritance of epigenetic defects. Science. 1987 Oct 9;238(4824):163–170. doi: 10.1126/science.3310230. [DOI] [PubMed] [Google Scholar]
  27. Hsu T. C., Arrighi F. E. Distribution of constitutive heterochromatin in mamallian chromosomes. Chromosoma. 1971;34(3):243–253. doi: 10.1007/BF00286150. [DOI] [PubMed] [Google Scholar]
  28. Huang X., Frenkel K., Klein C. B., Costa M. Nickel induces increased oxidants in intact cultured mammalian cells as detected by dichlorofluorescein fluorescence. Toxicol Appl Pharmacol. 1993 May;120(1):29–36. doi: 10.1006/taap.1993.1083. [DOI] [PubMed] [Google Scholar]
  29. Huang X., Klein C. B., Costa M. Crystalline Ni3S2 specifically enhances the formation of oxidants in the nuclei of CHO cells as detected by dichlorofluorescein. Carcinogenesis. 1994 Mar;15(3):545–548. doi: 10.1093/carcin/15.3.545. [DOI] [PubMed] [Google Scholar]
  30. Kargacin B., Klein C. B., Costa M. Mutagenic responses of nickel oxides and nickel sulfides in Chinese hamster V79 cell lines at the xanthine-guanine phosphoribosyl transferase locus. Mutat Res. 1993 Jun;300(1):63–72. doi: 10.1016/0165-1218(93)90141-y. [DOI] [PubMed] [Google Scholar]
  31. Karpen G. H. Position-effect variegation and the new biology of heterochromatin. Curr Opin Genet Dev. 1994 Apr;4(2):281–291. doi: 10.1016/s0959-437x(05)80055-3. [DOI] [PubMed] [Google Scholar]
  32. Kass S. U., Goddard J. P., Adams R. L. Inactive chromatin spreads from a focus of methylation. Mol Cell Biol. 1993 Dec;13(12):7372–7379. doi: 10.1128/mcb.13.12.7372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Keshet I., Lieman-Hurwitz J., Cedar H. DNA methylation affects the formation of active chromatin. Cell. 1986 Feb 28;44(4):535–543. doi: 10.1016/0092-8674(86)90263-1. [DOI] [PubMed] [Google Scholar]
  34. Klein C. B., Conway K., Wang X. W., Bhamra R. K., Lin X. H., Cohen M. D., Annab L., Barrett J. C., Costa M. Senescence of nickel-transformed cells by an X chromosome: possible epigenetic control. Science. 1991 Feb 15;251(4995):796–799. doi: 10.1126/science.1990442. [DOI] [PubMed] [Google Scholar]
  35. Klein C. B., Kargacin B., Su L., Cosentino S., Snow E. T., Costa M. Metal mutagenesis in transgenic Chinese hamster cell lines. Environ Health Perspect. 1994 Sep;102 (Suppl 3):63–67. doi: 10.1289/ehp.94102s363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Klein C. B., Rossman T. G. Transgenic Chinese hamster V79 cell lines which exhibit variable levels of gpt mutagenesis. Environ Mol Mutagen. 1990;16(1):1–12. doi: 10.1002/em.2850160102. [DOI] [PubMed] [Google Scholar]
  37. Klein C. B., Su L., Rossman T. G., Snow E. T. Transgenic gpt+ V79 cell lines differ in their mutagenic response to clastogens. Mutat Res. 1994 Jan 16;304(2):217–228. doi: 10.1016/0027-5107(94)90214-3. [DOI] [PubMed] [Google Scholar]
  38. Laird P. W., Jaenisch R. DNA methylation and cancer. Hum Mol Genet. 1994;3(Spec No):1487–1495. doi: 10.1093/hmg/3.suppl_1.1487. [DOI] [PubMed] [Google Scholar]
  39. Laybourn P. J., Kadonaga J. T. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science. 1991 Oct 11;254(5029):238–245. doi: 10.1126/science.254.5029.238. [DOI] [PubMed] [Google Scholar]
  40. Lee Y. W., Pons C., Tummolo D. M., Klein C. B., Rossman T. G., Christie N. T. Mutagenicity of soluble and insoluble nickel compounds at the gpt locus in G12 Chinese hamster cells. Environ Mol Mutagen. 1993;21(4):365–371. doi: 10.1002/em.2850210408. [DOI] [PubMed] [Google Scholar]
  41. Lehmann A. R., Arlett C. F., Harcourt S. A., Steingrimsdottir H., Gebara M. M. Mutagenic treatments result in inactivation of expression of a transfected bacterial gene integrated into a human cell line. Mutat Res. 1989 Mar-May;220(2-3):255–262. doi: 10.1016/0165-1110(89)90029-8. [DOI] [PubMed] [Google Scholar]
  42. Lichtenauer-Kaligis E. G., Thijssen J., den Dulk H., van de Putte P., Tasseron-de Jong J. G., Giphart-Gassler M. Genome wide spontaneous mutation in human cells determined by the spectrum of mutations in hprt cDNA genes. Mutagenesis. 1993 May;8(3):207–220. doi: 10.1093/mutage/8.3.207. [DOI] [PubMed] [Google Scholar]
  43. Lin X., Dowjat W. K., Costa M. Nickel-induced transformation of human cells causes loss of the phosphorylation of the retinoblastoma protein. Cancer Res. 1994 May 15;54(10):2751–2754. [PubMed] [Google Scholar]
  44. Lock L. F., Takagi N., Martin G. R. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell. 1987 Jan 16;48(1):39–46. doi: 10.1016/0092-8674(87)90353-9. [DOI] [PubMed] [Google Scholar]
  45. Lois R., Freeman L., Villeponteau B., Martinson H. G. Active beta-globin gene transcription occurs in methylated, DNase I-resistant chromatin of nonerythroid chicken cells. Mol Cell Biol. 1990 Jan;10(1):16–27. doi: 10.1128/mcb.10.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lyon M. F. Some milestones in the history of X-chromosome inactivation. Annu Rev Genet. 1992;26:16–28. doi: 10.1146/annurev.ge.26.120192.000313. [DOI] [PubMed] [Google Scholar]
  47. Lübbert M., Miller C. W., Koeffler H. P. Changes of DNA methylation and chromatin structure in the human myeloperoxidase gene during myeloid differentiation. Blood. 1991 Jul 15;78(2):345–356. [PubMed] [Google Scholar]
  48. Nitsch D., Stewart A. F., Boshart M., Mestril R., Weih F., Schütz G. Chromatin structures of the rat tyrosine aminotransferase gene relate to the function of its cis-acting elements. Mol Cell Biol. 1990 Jul;10(7):3334–3342. doi: 10.1128/mcb.10.7.3334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ohtani-Fujita N., Fujita T., Aoike A., Osifchin N. E., Robbins P. D., Sakai T. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene. 1993 Apr;8(4):1063–1067. [PubMed] [Google Scholar]
  50. Ostrander M., Vogel S., Silverstein S. Phenotypic switching in cells transformed with the herpes simplex virus thymidine kinase gene. Mol Cell Biol. 1982 Jun;2(6):708–714. doi: 10.1128/mcb.2.6.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Patel C. V., Gopinathan K. P. Determination of trace amounts of 5-methylcytosine in DNA by reverse-phase high-performance liquid chromatography. Anal Biochem. 1987 Jul;164(1):164–169. doi: 10.1016/0003-2697(87)90381-2. [DOI] [PubMed] [Google Scholar]
  52. Pellicer A., Robins D., Wold B., Sweet R., Jackson J., Lowy I., Roberts J. M., Sim G. K., Silverstein S., Axel R. Altering genotype and phenotype by DNA-mediated gene transfer. Science. 1980 Sep 19;209(4463):1414–1422. doi: 10.1126/science.7414320. [DOI] [PubMed] [Google Scholar]
  53. Pikaart M., Feng J., Villeponteau B. The polyomavirus enhancer activates chromatin accessibility on integration into the HPRT gene. Mol Cell Biol. 1992 Dec;12(12):5785–5792. doi: 10.1128/mcb.12.12.5785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Postnikov Y. V., Shick V. V., Belyavsky A. V., Khrapko K. R., Brodolin K. L., Nikolskaya T. A., Mirzabekov A. D. Distribution of high mobility group proteins 1/2, E and 14/17 and linker histones H1 and H5 on transcribed and non-transcribed regions of chicken erythrocyte chromatin. Nucleic Acids Res. 1991 Feb 25;19(4):717–725. doi: 10.1093/nar/19.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Richardson K. K., Fostel J., Skopek T. R. Nucleotide sequence of the xanthine guanine phosphoribosyl transferase gene of E. coli. Nucleic Acids Res. 1983 Dec 20;11(24):8809–8816. doi: 10.1093/nar/11.24.8809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Rideout W. M., 3rd, Eversole-Cire P., Spruck C. H., 3rd, Hustad C. M., Coetzee G. A., Gonzales F. A., Jones P. A. Progressive increases in the methylation status and heterochromatinization of the myoD CpG island during oncogenic transformation. Mol Cell Biol. 1994 Sep;14(9):6143–6152. doi: 10.1128/mcb.14.9.6143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ridsdale J. A., Davie J. R. Selective solubilization of beta-globin oligonucleosomes at low ionic strength. Biochemistry. 1987 Jan 13;26(1):290–295. doi: 10.1021/bi00375a040. [DOI] [PubMed] [Google Scholar]
  58. Riggs A. D., Pfeifer G. P. X-chromosome inactivation and cell memory. Trends Genet. 1992 May;8(5):169–174. doi: 10.1016/0168-9525(92)90219-t. [DOI] [PubMed] [Google Scholar]
  59. Rivedal E., Sanner T. Synergistic effect on morphological transformation of hamster embryo cells by nickel sulphate and benz[a]pyrene. Cancer Lett. 1980 Jan;8(3):203–208. doi: 10.1016/0304-3835(80)90002-6. [DOI] [PubMed] [Google Scholar]
  60. Sakai T., Toguchida J., Ohtani N., Yandell D. W., Rapaport J. M., Dryja T. P. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet. 1991 May;48(5):880–888. [PMC free article] [PubMed] [Google Scholar]
  61. Salnikow K., Cosentino S., Klein C., Costa M. Loss of thrombospondin transcriptional activity in nickel-transformed cells. Mol Cell Biol. 1994 Jan;14(1):851–858. doi: 10.1128/mcb.14.1.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Sen P., Conway K., Costa M. Comparison of the localization of chromosome damage induced by calcium chromate and nickel compounds. Cancer Res. 1987 Apr 15;47(8):2142–2147. [PubMed] [Google Scholar]
  63. Sen P., Costa M. Induction of chromosomal damage in Chinese hamster ovary cells by soluble and particulate nickel compounds: preferential fragmentation of the heterochromatic long arm of the X-chromosome by carcinogenic crystalline NiS particles. Cancer Res. 1985 May;45(5):2320–2325. [PubMed] [Google Scholar]
  64. Stone-Wolff D. S., Klein C. B., Rossman T. G. HGPRT- mutants of V79 cells that revert specifically by base pair substitution and frameshift mutations. Environ Mutagen. 1985;7(3):281–291. doi: 10.1002/em.2860070305. [DOI] [PubMed] [Google Scholar]
  65. Sutcliffe J. S., Nelson D. L., Zhang F., Pieretti M., Caskey C. T., Saxe D., Warren S. T. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1992 Sep;1(6):397–400. doi: 10.1093/hmg/1.6.397. [DOI] [PubMed] [Google Scholar]
  66. Swain J. L., Stewart T. A., Leder P. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell. 1987 Aug 28;50(5):719–727. doi: 10.1016/0092-8674(87)90330-8. [DOI] [PubMed] [Google Scholar]
  67. Tasseron-de Jong J. G., den Dulk H., van de Putte P., Giphart-Gassler M. De novo methylation as major event in the inactivation of transfected herpesvirus thymidine kinase genes in human cells. Biochim Biophys Acta. 1989 Mar 1;1007(2):215–223. doi: 10.1016/0167-4781(89)90042-0. [DOI] [PubMed] [Google Scholar]
  68. Thacker J. The chromosomes of a V79 Chinese hamster line and a mutant subline lacking HPRT activity. Cytogenet Cell Genet. 1981;29(1):16–25. doi: 10.1159/000131547. [DOI] [PubMed] [Google Scholar]
  69. Tkeshelashvili L. K., Reid T. M., McBride T. J., Loeb L. A. Nickel induces a signature mutation for oxygen free radical damage. Cancer Res. 1993 Sep 15;53(18):4172–4174. [PubMed] [Google Scholar]
  70. Vogelstein B., Fearon E. R., Kern S. E., Hamilton S. R., Preisinger A. C., Nakamura Y., White R. Allelotype of colorectal carcinomas. Science. 1989 Apr 14;244(4901):207–211. doi: 10.1126/science.2565047. [DOI] [PubMed] [Google Scholar]
  71. Weith A. Mg2+-dependent compactness of heterochromatic chromosome segments. Exp Cell Res. 1983 Jun;146(1):199–203. doi: 10.1016/0014-4827(83)90338-5. [DOI] [PubMed] [Google Scholar]
  72. Wigler M. H. The inheritance of methylation patterns in vertebrates. Cell. 1981 May;24(2):285–286. doi: 10.1016/0092-8674(81)90317-2. [DOI] [PubMed] [Google Scholar]
  73. Zhang Y., Shields T., Crenshaw T., Hao Y., Moulton T., Tycko B. Imprinting of human H19: allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching. Am J Hum Genet. 1993 Jul;53(1):113–124. [PMC free article] [PubMed] [Google Scholar]
  74. al-Shawi R., Kinnaird J., Burke J., Bishop J. O. Expression of a foreign gene in a line of transgenic mice is modulated by a chromosomal position effect. Mol Cell Biol. 1990 Mar;10(3):1192–1198. doi: 10.1128/mcb.10.3.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES