Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 May;15(5):2754–2762. doi: 10.1128/mcb.15.5.2754

Isolation and characterization of a novel mitogenic regulatory gene, 322, which is transcriptionally suppressed in cells transformed by src and ras.

X Lin 1, P J Nelson 1, B Frankfort 1, E Tombler 1, R Johnson 1, I H Gelman 1
PMCID: PMC230506  PMID: 7739556

Abstract

In an attempt to isolate novel regulatory and/or tumor suppressor genes, we identified cDNAs whose abundance is low in NIH 3T3 cells and further decreased following the expression of the activated oncogene, v-src. The transcription of one such gene, 322, is suppressed at least 15-fold in src-, ras-, and fos-transformed cells and 3-fold in myc-transformed cells but is unaffected in raf-, mos-, or neu-transformed cells. Activation of a ts-v-src allele in confluent 3Y1 fibroblasts resulted in an initial increase in 322 mRNA levels after 1 to 2 h followed by a rapid decrease to suppressed levels after 4 to 8 h. Morphological transformation was not detected until 12 h later, indicating that the accumulation of 322 transcripts is regulated by v-src and not as a consequence of transformation. Addition of fetal calf serum to starved subconfluent NIH 3T3 or 3Y1 fibroblasts resulted in a similar biphasic regulation of 322, indicating that 322 transcription is responsive to mitogenic factors. Sequence analysis of a putative full-length 322 cDNA clone (5.4 kb) identified a large open reading frame (ORF) encoding a 148.1-kDa product. In vitro transcription and translation of the 322 cDNA from a T7 promoter resulted in a 207-kDa product whose electrophoretic mobility on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel was unaffected by digestion with endoglycosidase F. The discrepancy in predicted versus measured molecular weights may result from the high percentage of acidic residues (roughly 20% Glu or Asp) in the 322 ORF product. Comparison of the 322 cDNA ORF with sequences in data banks indicates that this gene is novel. The 322 ORF product contains a potential Cys-1-His-3 Zn finger, at least five nuclear localization signals of the adenovirus E1a motif K(R/K)X(R/K), and alternating acidic and basic domains. Overexpression of the 322 cells resulted in the selection of rapidly growing cells which had lost the transduced 322 cDNA. Thus, 322 represent a novel src- and ras-regulated gene which encodes a potential regulator of mitogenesis and/or tumor suppressor.

Full Text

The Full Text of this article is available as a PDF (463.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borner C., Guadagno S. N., Hsiao W. W., Fabbro D., Barr M., Weinstein I. B. Expression of four protein kinase C isoforms in rat fibroblasts. Differential alterations in ras-, src-, and fos-transformed cells. J Biol Chem. 1992 Jun 25;267(18):12900–12910. [PubMed] [Google Scholar]
  2. Buluwela L., Forster A., Boehm T., Rabbitts T. H. A rapid procedure for colony screening using nylon filters. Nucleic Acids Res. 1989 Jan 11;17(1):452–452. doi: 10.1093/nar/17.1.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Contente S., Kenyon K., Rimoldi D., Friedman R. M. Expression of gene rrg is associated with reversion of NIH 3T3 transformed by LTR-c-H-ras. Science. 1990 Aug 17;249(4970):796–798. doi: 10.1126/science.1697103. [DOI] [PubMed] [Google Scholar]
  5. Danos O., Mulligan R. C. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6460–6464. doi: 10.1073/pnas.85.17.6460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dyson N., Harlow E. Adenovirus E1A targets key regulators of cell proliferation. Cancer Surv. 1992;12:161–195. [PubMed] [Google Scholar]
  7. Dérijard B., Hibi M., Wu I. H., Barrett T., Su B., Deng T., Karin M., Davis R. J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994 Mar 25;76(6):1025–1037. doi: 10.1016/0092-8674(94)90380-8. [DOI] [PubMed] [Google Scholar]
  8. Earnshaw W. C., Sullivan K. F., Machlin P. S., Cooke C. A., Kaiser D. A., Pollard T. D., Rothfield N. F., Cleveland D. W. Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol. 1987 Apr;104(4):817–829. doi: 10.1083/jcb.104.4.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frankfort B. J., Gelman I. H. Identification of novel cellular genes transcriptionally suppressed by v-src. Biochem Biophys Res Commun. 1995 Jan 26;206(3):916–926. doi: 10.1006/bbrc.1995.1130. [DOI] [PubMed] [Google Scholar]
  10. Gelman I. H., Khan S., Hanafusa H. Morphological transformation, tumorigenicity and src-specific cytotoxic T-lymphocyte-mediated tumor immunity induced by murine 3T3 cells expressing src oncogenes encoding novel non-myristylated N-terminal domains. Oncogene. 1993 Nov;8(11):2995–3004. [PubMed] [Google Scholar]
  11. Gelman I. H., Silverstein S. Co-ordinate regulation of herpes simplex virus gene expression is mediated by the functional interaction of two immediate early gene products. J Mol Biol. 1986 Oct 5;191(3):395–409. doi: 10.1016/0022-2836(86)90135-x. [DOI] [PubMed] [Google Scholar]
  12. Gelman I. H., Silverstein S. Herpes simplex virus immediate-early promoters are responsive to virus and cell trans-acting factors. J Virol. 1987 Jul;61(7):2286–2296. doi: 10.1128/jvi.61.7.2286-2296.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glück U., Kwiatkowski D. J., Ben-Ze'ev A. Suppression of tumorigenicity in simian virus 40-transformed 3T3 cells transfected with alpha-actinin cDNA. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):383–387. doi: 10.1073/pnas.90.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gordon T., Grove B., Loftus J. C., O'Toole T., McMillan R., Lindstrom J., Ginsberg M. H. Molecular cloning and preliminary characterization of a novel cytoplasmic antigen recognized by myasthenia gravis sera. J Clin Invest. 1992 Sep;90(3):992–999. doi: 10.1172/JCI115976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harada H., Kitagawa M., Tanaka N., Yamamoto H., Harada K., Ishihara M., Taniguchi T. Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science. 1993 Feb 12;259(5097):971–974. doi: 10.1126/science.8438157. [DOI] [PubMed] [Google Scholar]
  16. Hibi M., Lin A., Smeal T., Minden A., Karin M. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 1993 Nov;7(11):2135–2148. doi: 10.1101/gad.7.11.2135. [DOI] [PubMed] [Google Scholar]
  17. Houle B., Rochette-Egly C., Bradley W. E. Tumor-suppressive effect of the retinoic acid receptor beta in human epidermoid lung cancer cells. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):985–989. doi: 10.1073/pnas.90.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Korman A. J., Frantz J. D., Strominger J. L., Mulligan R. C. Expression of human class II major histocompatibility complex antigens using retrovirus vectors. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2150–2154. doi: 10.1073/pnas.84.8.2150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee S. W., Tomasetto C., Sager R. Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2825–2829. doi: 10.1073/pnas.88.7.2825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levine A. J. The tumor suppressor genes. Annu Rev Biochem. 1993;62:623–651. doi: 10.1146/annurev.bi.62.070193.003203. [DOI] [PubMed] [Google Scholar]
  21. Mayer B. J., Jove R., Krane J. F., Poirier F., Calothy G., Hanafusa H. Genetic lesions involved in temperature sensitivity of the src gene products of four Rous sarcoma virus mutants. J Virol. 1986 Dec;60(3):858–867. doi: 10.1128/jvi.60.3.858-867.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morgenstern J. P., Land H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990 Jun 25;18(12):3587–3596. doi: 10.1093/nar/18.12.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ozaki T., Sakiyama S. Tumor-suppressive activity of N03 gene product in v-src-transformed rat 3Y1 fibroblasts. Cancer Res. 1994 Feb 1;54(3):646–648. [PubMed] [Google Scholar]
  24. Prasad G. L., Fuldner R. A., Cooper H. L. Expression of transduced tropomyosin 1 cDNA suppresses neoplastic growth of cells transformed by the ras oncogene. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7039–7043. doi: 10.1073/pnas.90.15.7039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Prendergast G. C., Hopewell R., Gorham B. J., Ziff E. B. Biphasic effect of Max on Myc cotransformation activity and dependence on amino- and carboxy-terminal Max functions. Genes Dev. 1992 Dec;6(12A):2429–2439. doi: 10.1101/gad.6.12a.2429. [DOI] [PubMed] [Google Scholar]
  26. Reed R., Maniatis T. The role of the mammalian branchpoint sequence in pre-mRNA splicing. Genes Dev. 1988 Oct;2(10):1268–1276. doi: 10.1101/gad.2.10.1268. [DOI] [PubMed] [Google Scholar]
  27. Sager R. Tumor suppressor genes: the puzzle and the promise. Science. 1989 Dec 15;246(4936):1406–1412. doi: 10.1126/science.2574499. [DOI] [PubMed] [Google Scholar]
  28. Silver P. A., Keegan L. P., Ptashne M. Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5951–5955. doi: 10.1073/pnas.81.19.5951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stanway C. A. The transactivator GAL4: co-activators, adaptors and chromatin. Bioessays. 1991 May;13(5):241–242. doi: 10.1002/bies.950130507. [DOI] [PubMed] [Google Scholar]
  30. Williams N. G., Roberts T. M. Signal transduction pathways involving the Raf proto-oncogene. Cancer Metastasis Rev. 1994 Mar;13(1):105–116. doi: 10.1007/BF00690421. [DOI] [PubMed] [Google Scholar]
  31. Zou Z., Anisowicz A., Hendrix M. J., Thor A., Neveu M., Sheng S., Rafidi K., Seftor E., Sager R. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science. 1994 Jan 28;263(5146):526–529. doi: 10.1126/science.8290962. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES