Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Jun;15(6):3110–3118. doi: 10.1128/mcb.15.6.3110

MIP1 alpha nuclear protein (MNP), a novel transcription factor expressed in hematopoietic cells that is crucial for transcription of the human MIP-1 alpha gene.

L M Ritter 1, M Bryans 1, O Abdo 1, V Sharma 1, N M Wilkie 1
PMCID: PMC230542  PMID: 7760807

Abstract

Murine macrophage inflammatory protein 1 alpha (MIP-1 alpha) and its human equivalent (GOS19, LD78, or AT464) are members of the -C-C family of low-molecular-weight chemokines. Secreted from activated T cells and macrophages, bone marrow-derived MIP-1 alpha/GOS19 inhibits primitive hematopoietic stem cells and appears to be involved in the homeostatic control of stem cell proliferation. It also induces chemotaxis and inflammatory responses in mature cell types. Therefore, it is important to understand the mechanisms which control the expression of MIP-1 alpha/GOS19. Previous work has shown that in Jurkat T cells, a set of widely expressed transcription factors (the ICK-1 family) affect the GOS19 promoter. One member, ICK-1A, behaves as a strong negative regulator. In this communication, we provide evidence that the pathway of induction in the macrophage cell line U937 is different from that in Jurkat cells. Furthermore, we show that the ICK-1 binding site does not confer negative regulation in U937 cells. We provide evidence for an additional binding site, the MIP-1 alpha nuclear protein (MNP) site, which overlaps the ICK-1 site. Interaction of nuclear extracts from various cell lines and tissue with the MNP site leads to the formation of fast-migrating protein-DNA complexes with similar but distinct electrophoretic mobilities. A mutation of the MNP site which does not abrogate ICK-1 binding inactivates the GOS19.1 promoter in U937 cells and reduces its activity by fourfold in Jurkat cells. We propose that the MNP protein(s) binding at the MNP site constitutes a novel transcription factor(s) expressed in hematopoietic cells.

Full Text

The Full Text of this article is available as a PDF (764.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam R., Forsythe P. A., Stafford S., Lett-Brown M. A., Grant J. A. Macrophage inflammatory protein-1 alpha activates basophils and mast cells. J Exp Med. 1992 Sep 1;176(3):781–786. doi: 10.1084/jem.176.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blum S., Forsdyke R. E., Forsdyke D. R. Three human homologs of a murine gene encoding an inhibitor of stem cell proliferation. DNA Cell Biol. 1990 Oct;9(8):589–602. doi: 10.1089/dna.1990.9.589. [DOI] [PubMed] [Google Scholar]
  3. Bodine D. M., Crosier P. S., Clark S. C. Effects of hematopoietic growth factors on the survival of primitive stem cells in liquid suspension culture. Blood. 1991 Aug 15;78(4):914–920. [PubMed] [Google Scholar]
  4. Broxmeyer H. E., Sherry B., Lu L., Cooper S., Oh K. O., Tekamp-Olson P., Kwon B. S., Cerami A. Enhancing and suppressing effects of recombinant murine macrophage inflammatory proteins on colony formation in vitro by bone marrow myeloid progenitor cells. Blood. 1990 Sep 15;76(6):1110–1116. [PubMed] [Google Scholar]
  5. Davatelis G., Tekamp-Olson P., Wolpe S. D., Hermsen K., Luedke C., Gallegos C., Coit D., Merryweather J., Cerami A. Cloning and characterization of a cDNA for murine macrophage inflammatory protein (MIP), a novel monokine with inflammatory and chemokinetic properties. J Exp Med. 1988 Jun 1;167(6):1939–1944. doi: 10.1084/jem.167.6.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunlop D. J., Wright E. G., Lorimore S., Graham G. J., Holyoake T., Kerr D. J., Wolpe S. D., Pragnell I. B. Demonstration of stem cell inhibition and myeloprotective effects of SCI/rhMIP1 alpha in vivo. Blood. 1992 May 1;79(9):2221–2225. [PubMed] [Google Scholar]
  8. Eaves C. J., Cashman J. D., Wolpe S. D., Eaves A. C. Unresponsiveness of primitive chronic myeloid leukemia cells to macrophage inflammatory protein 1 alpha, an inhibitor of primitive normal hematopoietic cells. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):12015–12019. doi: 10.1073/pnas.90.24.12015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fahey T. J., 3rd, Tracey K. J., Tekamp-Olson P., Cousens L. S., Jones W. G., Shires G. T., Cerami A., Sherry B. Macrophage inflammatory protein 1 modulates macrophage function. J Immunol. 1992 May 1;148(9):2764–2769. [PubMed] [Google Scholar]
  10. Faisst S., Meyer S. Compilation of vertebrate-encoded transcription factors. Nucleic Acids Res. 1992 Jan 11;20(1):3–26. doi: 10.1093/nar/20.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forsdyke D. R. cDNA cloning of mRNAS which increase rapidly in human lymphocytes cultured with concanavalin-A and cycloheximide. Biochem Biophys Res Commun. 1985 Jun 28;129(3):619–625. doi: 10.1016/0006-291x(85)91936-9. [DOI] [PubMed] [Google Scholar]
  12. Graham G. J., Pragnell I. B. SCI/MIP-1 alpha: a potent stem cell inhibitor with potential roles in development. Dev Biol. 1992 Jun;151(2):377–381. doi: 10.1016/0012-1606(92)90177-i. [DOI] [PubMed] [Google Scholar]
  13. Graham G. J., Wright E. G., Hewick R., Wolpe S. D., Wilkie N. M., Donaldson D., Lorimore S., Pragnell I. B. Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature. 1990 Mar 29;344(6265):442–444. doi: 10.1038/344442a0. [DOI] [PubMed] [Google Scholar]
  14. Gunter K. C., Irving S. G., Zipfel P. F., Siebenlist U., Kelly K. Cyclosporin A-mediated inhibition of mitogen-induced gene transcription is specific for the mitogenic stimulus and cell type. J Immunol. 1989 May 1;142(9):3286–3291. [PubMed] [Google Scholar]
  15. Hirashima M., Ono T., Nakao M., Nishi H., Kimura A., Nomiyama H., Hamada F., Yoshida M. C., Shimada K. Nucleotide sequence of the third cytokine LD78 gene and mapping of all three LD78 gene loci to human chromosome 17. DNA Seq. 1992;3(4):203–212. doi: 10.3109/10425179209034019. [DOI] [PubMed] [Google Scholar]
  16. Holyoake T. L., Freshney M. G., Sproul A. M., Richmond L. J., Alcorn M. J., Steward W. P., Fitzsimons E., Dunlop D. J., Franklin I. M., Pragnell I. B. Contrasting effects of rh-MIP-1 alpha and TGF-beta 1 on chronic myeloid leukemia progenitors in vitro. Stem Cells. 1993 Oct;11 (Suppl 3):122–128. doi: 10.1002/stem.5530110925. [DOI] [PubMed] [Google Scholar]
  17. Hromas R., Zon L., Friedman A. D. Hematopoietic transcription regulators and the origins of leukemia. Crit Rev Oncol Hematol. 1992 Mar;12(2):167–190. doi: 10.1016/1040-8428(92)90088-8. [DOI] [PubMed] [Google Scholar]
  18. Irving S. G., June C. H., Zipfel P. F., Siebenlist U., Kelly K. Mitogen-induced genes are subject to multiple pathways of regulation in the initial stages of T-cell activation. Mol Cell Biol. 1989 Mar;9(3):1034–1040. doi: 10.1128/mcb.9.3.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Irving S. G., Zipfel P. F., Balke J., McBride O. W., Morton C. C., Burd P. R., Siebenlist U., Kelly K. Two inflammatory mediator cytokine genes are closely linked and variably amplified on chromosome 17q. Nucleic Acids Res. 1990 Jun 11;18(11):3261–3270. doi: 10.1093/nar/18.11.3261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kukita T., Nakao J., Hamada F., Kukita A., Inai T., Kurisu K., Nomiyama H. Recombinant LD78 protein, a member of the small cytokine family, enhances osteoclast differentiation in rat bone marrow culture system. Bone Miner. 1992 Dec;19(3):215–223. doi: 10.1016/0169-6009(92)90871-a. [DOI] [PubMed] [Google Scholar]
  21. Leonard E. J., Yoshimura T. Human monocyte chemoattractant protein-1 (MCP-1). Immunol Today. 1990 Mar;11(3):97–101. doi: 10.1016/0167-5699(90)90035-8. [DOI] [PubMed] [Google Scholar]
  22. Lord B. I., Dexter T. M., Clements J. M., Hunter M. A., Gearing A. J. Macrophage-inflammatory protein protects multipotent hematopoietic cells from the cytotoxic effects of hydroxyurea in vivo. Blood. 1992 May 15;79(10):2605–2609. [PubMed] [Google Scholar]
  23. Lord B. I., Mori K. J., Wright E. G. A stimulator of stem cell proliferation in regenerating bone marrow. Biomedicine. 1977 Jul;27(6):223–226. [PubMed] [Google Scholar]
  24. Lord B. I., Mori K. J., Wright E. G., Lajtha L. G. Inhibitor of stem cell proliferation in normal bone marrow. Br J Haematol. 1976 Nov;34(3):441–445. doi: 10.1111/j.1365-2141.1976.tb03590.x. [DOI] [PubMed] [Google Scholar]
  25. Lord B. I., Wright E. G. Spatial organisation of CFU-S proliferation regulators in the mouse femur. Leuk Res. 1984;8(6):1073–1083. doi: 10.1016/0145-2126(84)90063-8. [DOI] [PubMed] [Google Scholar]
  26. Lukacs N. W., Chensue S. W., Smith R. E., Strieter R. M., Warmington K., Wilke C., Kunkel S. L. Production of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 alpha by inflammatory granuloma fibroblasts. Am J Pathol. 1994 Apr;144(4):711–718. [PMC free article] [PubMed] [Google Scholar]
  27. Martin C. A., Dorf M. E. Differential regulation of interleukin-6, macrophage inflammatory protein-1, and JE/MCP-1 cytokine expression in macrophage cell lines. Cell Immunol. 1991 Jun;135(1):245–258. doi: 10.1016/0008-8749(91)90269-h. [DOI] [PubMed] [Google Scholar]
  28. Matsue H., Cruz P. D., Jr, Bergstresser P. R., Takashima A. Langerhans cells are the major source of mRNA for IL-1 beta and MIP-1 alpha among unstimulated mouse epidermal cells. J Invest Dermatol. 1992 Nov;99(5):537–541. doi: 10.1111/1523-1747.ep12667296. [DOI] [PubMed] [Google Scholar]
  29. Matsushima K., Larsen C. G., DuBois G. C., Oppenheim J. J. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med. 1989 Apr 1;169(4):1485–1490. doi: 10.1084/jem.169.4.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Miller M. D., Krangel M. S. Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit Rev Immunol. 1992;12(1-2):17–46. [PubMed] [Google Scholar]
  31. Miyatake S., Seiki M., Yoshida M., Arai K. T-cell activation signals and human T-cell leukemia virus type I-encoded p40x protein activate the mouse granulocyte-macrophage colony-stimulating factor gene through a common DNA element. Mol Cell Biol. 1988 Dec;8(12):5581–5587. doi: 10.1128/mcb.8.12.5581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nakao M., Nomiyama H., Shimada K. Structures of human genes coding for cytokine LD78 and their expression. Mol Cell Biol. 1990 Jul;10(7):3646–3658. doi: 10.1128/mcb.10.7.3646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nishizawa M., Nagata S. Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages. Mol Cell Biol. 1990 May;10(5):2002–2011. doi: 10.1128/mcb.10.5.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nomiyama H., Hieshima K., Hirokawa K., Hattori T., Takatsuki K., Miura R. Characterization of cytokine LD78 gene promoters: positive and negative transcriptional factors bind to a negative regulatory element common to LD78, interleukin-3, and granulocyte-macrophage colony-stimulating factor gene promoters. Mol Cell Biol. 1993 May;13(5):2787–2801. doi: 10.1128/mcb.13.5.2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Obaru K., Fukuda M., Maeda S., Shimada K. A cDNA clone used to study mRNA inducible in human tonsillar lymphocytes by a tumor promoter. J Biochem. 1986 Mar;99(3):885–894. doi: 10.1093/oxfordjournals.jbchem.a135549. [DOI] [PubMed] [Google Scholar]
  36. SELIGER H. H., McELROY W. D. Spectral emission and quantum yield of firefly bioluminescence. Arch Biochem Biophys. 1960 May;88:136–141. doi: 10.1016/0003-9861(60)90208-3. [DOI] [PubMed] [Google Scholar]
  37. Schall T. J., Bacon K., Toy K. J., Goeddel D. V. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature. 1990 Oct 18;347(6294):669–671. doi: 10.1038/347669a0. [DOI] [PubMed] [Google Scholar]
  38. Schall T. J. Biology of the RANTES/SIS cytokine family. Cytokine. 1991 May;3(3):165–183. doi: 10.1016/1043-4666(91)90013-4. [DOI] [PubMed] [Google Scholar]
  39. Shannon M. F., Gamble J. R., Vadas M. A. Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene. Proc Natl Acad Sci U S A. 1988 Feb;85(3):674–678. doi: 10.1073/pnas.85.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shiozaki H., Ide T., Nakao J., Imamura T., Nakamura M., Shimada K., Miura Y., Suda T. Suppressive effect of LD78 on the proliferation of human hemopoietic progenitors. Jpn J Cancer Res. 1992 May;83(5):499–504. doi: 10.1111/j.1349-7006.1992.tb01956.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Siderovski D. P., Blum S., Forsdyke R. E., Forsdyke D. R. A set of human putative lymphocyte G0/G1 switch genes includes genes homologous to rodent cytokine and zinc finger protein-encoding genes. DNA Cell Biol. 1990 Oct;9(8):579–587. doi: 10.1089/dna.1990.9.579. [DOI] [PubMed] [Google Scholar]
  42. Skerka C., Irving S. G., Bialonski A., Zipfel P. F. Cell type specific expression of members of the IL-8/NAP-1 gene family. Cytokine. 1993 Mar;5(2):112–116. doi: 10.1016/1043-4666(93)90049-b. [DOI] [PubMed] [Google Scholar]
  43. Sundström C., Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer. 1976 May 15;17(5):565–577. doi: 10.1002/ijc.2910170504. [DOI] [PubMed] [Google Scholar]
  44. Tanaka J., Nomiyama H., Yamamoto T., Hamada F., Kambara T. T-cell chemotactic activity of cytokine LD78: a comparative study with interleukin-8, a chemotactic factor for the T-cell CD45RA+ phenotype. Int Arch Allergy Immunol. 1993;100(3):201–208. doi: 10.1159/000236412. [DOI] [PubMed] [Google Scholar]
  45. Tejero C., Testa N. G., Lord B. I. The cellular specificity of haemopoietic stem cell proliferation regulators. Br J Cancer. 1984 Sep;50(3):335–341. doi: 10.1038/bjc.1984.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Widmer U., Yang Z., van Deventer S., Manogue K. R., Sherry B., Cerami A. Genomic structure of murine macrophage inflammatory protein-1 alpha and conservation of potential regulatory sequences with a human homolog, LD78. J Immunol. 1991 Jun 1;146(11):4031–4040. [PubMed] [Google Scholar]
  47. Wildeman A. G. Regulation of SV40 early gene expression. Biochem Cell Biol. 1988 Jun;66(6):567–577. doi: 10.1139/o88-067. [DOI] [PubMed] [Google Scholar]
  48. Wissmann A., Hillen W. DNA contacts probed by modification protection and interference studies. Methods Enzymol. 1991;208:365–379. doi: 10.1016/0076-6879(91)08020-i. [DOI] [PubMed] [Google Scholar]
  49. Wood K. V., de Wet J. R., Dewji N., DeLuca M. Synthesis of active firefly luciferase by in vitro translation of RNA obtained from adult lanterns. Biochem Biophys Res Commun. 1984 Oct 30;124(2):592–596. doi: 10.1016/0006-291x(84)91595-x. [DOI] [PubMed] [Google Scholar]
  50. Yamamura Y., Hattori T., Obaru K., Sakai K., Asou N., Takatsuki K., Ohmoto Y., Nomiyama H., Shimada K. Synthesis of a novel cytokine and its gene (LD78) expressions in hematopoietic fresh tumor cells and cell lines. J Clin Invest. 1989 Dec;84(6):1707–1712. doi: 10.1172/JCI114353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zipfel P. F., Balke J., Irving S. G., Kelly K., Siebenlist U. Mitogenic activation of human T cells induces two closely related genes which share structural similarities with a new family of secreted factors. J Immunol. 1989 Mar 1;142(5):1582–1590. [PubMed] [Google Scholar]
  52. Zipfel P. F., Irving S. G., Kelly K., Siebenlist U. Complexity of the primary genetic response to mitogenic activation of human T cells. Mol Cell Biol. 1989 Mar;9(3):1041–1048. doi: 10.1128/mcb.9.3.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES