Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Aug;15(8):3969–3978. doi: 10.1128/mcb.15.8.3969

Established epigenetic modifications determine the expression of developmentally regulated globin genes in somatic cell hybrids.

S J Stanworth 1, N A Roberts 1, J A Sharpe 1, J A Sloane-Stanley 1, W G Wood 1
PMCID: PMC230636  PMID: 7623793

Abstract

Somatic cell hybrids generated from transgenic mouse cells have been used to examine the developmental regulation of human gamma-to-beta-globin gene switching. In hybrids between mouse erythroleukemia (MEL) cells and transgenic erythroblasts taken at various stages of development, there was regulated expression of the human fetal gamma and adult beta genes, reproducing the in vivo pattern prior to fusion. Hybrids formed from embryonic blood cells produced predominantly gamma mRNA, whereas beta gene expression was observed in adult hybrids and a complete range of intermediate patterns was found in fetal liver hybrids. The adult environment of the MEL cells, therefore, did not appear to influence selective transcription from this gene complex. Irradiation of the embryonic erythroid cells prior to fusion resulted in hybrids containing only small fragments of donor chromosomes, but the pattern of gene expression did not differ from that of unirradiated hybrids. This finding suggests that continued expression of trans-acting factors from the donor erythroblasts is not necessary for continued expression of the human gamma gene in MEL cells. These results contrast with the lack of developmental regulation of the cluster after transfection of naked DNA into MEL cells and suggest that epigenetic processes established during normal development result in the gene cluster adopting a developmental stage-specific, stable conformation which is maintained through multiple rounds of replication and transcription in the MEL cell hybrids. On prolonged culture, hybrids that initially expressed only the gamma transgene switched to beta gene expression. The time period of switching, from approximately 10 to > 40 weeks, was similar to that seen previously in human fetal erythroblast x MEL cell hybrids but in this case bore no relationship to the time of in vivo switching. It seems unlikely, therefore, that switching in these hybrids is regulated by a developmental clock.

Full Text

The Full Text of this article is available as a PDF (1,010.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M., Oshima R. G. A single human keratin 18 gene is expressed in diverse epithelial cells of transgenic mice. J Cell Biol. 1990 Sep;111(3):1197–1206. doi: 10.1083/jcb.111.3.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aparicio O. M., Gottschling D. E. Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 1994 May 15;8(10):1133–1146. doi: 10.1101/gad.8.10.1133. [DOI] [PubMed] [Google Scholar]
  3. Baron M. H., Maniatis T. Rapid reprogramming of globin gene expression in transient heterokaryons. Cell. 1986 Aug 15;46(4):591–602. doi: 10.1016/0092-8674(86)90885-8. [DOI] [PubMed] [Google Scholar]
  4. Baron M. H., Maniatis T. Regulated expression of human alpha- and beta-globin genes in transient heterokaryons. Mol Cell Biol. 1991 Mar;11(3):1239–1247. doi: 10.1128/mcb.11.3.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berry M., Grosveld F., Dillon N. A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin. Nature. 1992 Aug 6;358(6386):499–502. doi: 10.1038/358499a0. [DOI] [PubMed] [Google Scholar]
  6. Bienz M. Molecular mechanisms of determination in Drosophila. Curr Opin Cell Biol. 1992 Dec;4(6):955–961. doi: 10.1016/0955-0674(92)90124-u. [DOI] [PubMed] [Google Scholar]
  7. Chada K., Magram J., Costantini F. An embryonic pattern of expression of a human fetal globin gene in transgenic mice. Nature. 1986 Feb 20;319(6055):685–689. doi: 10.1038/319685a0. [DOI] [PubMed] [Google Scholar]
  8. Chan C. S., Rastelli L., Pirrotta V. A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J. 1994 Jun 1;13(11):2553–2564. doi: 10.1002/j.1460-2075.1994.tb06545.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Dillon N., Grosveld F. Transcriptional regulation of multigene loci: multilevel control. Trends Genet. 1993 Apr;9(4):134–137. doi: 10.1016/0168-9525(93)90208-y. [DOI] [PubMed] [Google Scholar]
  11. Engel J. D. Developmental regulation of human beta-globin gene transcription: a switch of loyalties? Trends Genet. 1993 Sep;9(9):304–309. doi: 10.1016/0168-9525(93)90248-g. [DOI] [PubMed] [Google Scholar]
  12. Enver T., Brice M., Karlinsey J., Stamatoyannopoulos G., Papayannopoulou T. Developmental regulation of fetal to adult globin gene switching in human fetal erythroid x mouse erythroleukemia cell hybrids. Dev Biol. 1991 Nov;148(1):129–137. doi: 10.1016/0012-1606(91)90323-u. [DOI] [PubMed] [Google Scholar]
  13. Gallarda J. L., Foley K. P., Yang Z. Y., Engel J. D. The beta-globin stage selector element factor is erythroid-specific promoter/enhancer binding protein NF-E4. Genes Dev. 1989 Dec;3(12A):1845–1859. doi: 10.1101/gad.3.12a.1845. [DOI] [PubMed] [Google Scholar]
  14. Grosveld F., van Assendelft G. B., Greaves D. R., Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell. 1987 Dec 24;51(6):975–985. doi: 10.1016/0092-8674(87)90584-8. [DOI] [PubMed] [Google Scholar]
  15. Harvey M. P., Crosbie J., Trent R. J. Human G gamma and A gamma globin gene constructs containing the 3' A gamma enhancer show persistent fetal expression in transgenic mice. Transgenic Res. 1993 Mar;2(2):121–124. doi: 10.1007/BF01969386. [DOI] [PubMed] [Google Scholar]
  16. Higgs D. R., Wood W. G., Jarman A. P., Sharpe J., Lida J., Pretorius I. M., Ayyub H. A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes Dev. 1990 Sep;4(9):1588–1601. doi: 10.1101/gad.4.9.1588. [DOI] [PubMed] [Google Scholar]
  17. Jane S. M., Gumucio D. L., Ney P. A., Cunningham J. M., Nienhuis A. W. Methylation-enhanced binding of Sp1 to the stage selector element of the human gamma-globin gene promoter may regulate development specificity of expression. Mol Cell Biol. 1993 Jun;13(6):3272–3281. doi: 10.1128/mcb.13.6.3272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jane S. M., Ney P. A., Vanin E. F., Gumucio D. L., Nienhuis A. W. Identification of a stage selector element in the human gamma-globin gene promoter that fosters preferential interaction with the 5' HS2 enhancer when in competition with the beta-promoter. EMBO J. 1992 Aug;11(8):2961–2969. doi: 10.1002/j.1460-2075.1992.tb05366.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kollias G., Wrighton N., Hurst J., Grosveld F. Regulated expression of human A gamma-, beta-, and hybrid gamma beta-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell. 1986 Jul 4;46(1):89–94. doi: 10.1016/0092-8674(86)90862-7. [DOI] [PubMed] [Google Scholar]
  20. Laurenson P., Rine J. Silencers, silencing, and heritable transcriptional states. Microbiol Rev. 1992 Dec;56(4):543–560. doi: 10.1128/mr.56.4.543-560.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li X., Gutjahr T., Noll M. Separable regulatory elements mediate the establishment and maintenance of cell states by the Drosophila segment-polarity gene gooseberry. EMBO J. 1993 Apr;12(4):1427–1436. doi: 10.1002/j.1460-2075.1993.tb05786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Magram J., Chada K., Costantini F. Developmental regulation of a cloned adult beta-globin gene in transgenic mice. Nature. 1985 May 23;315(6017):338–340. doi: 10.1038/315338a0. [DOI] [PubMed] [Google Scholar]
  23. Melis M., Demopulos G., Najfeld V., Zhang J. W., Brice M., Papayannopoulou T., Stamatoyannopoulos G. A chromosome 11-linked determinant controls fetal globin expression and the fetal-to-adult globin switch. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8105–8109. doi: 10.1073/pnas.84.22.8105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Monk M. Changes in DNA methylation during mouse embryonic development in relation to X-chromosome activity and imprinting. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1235):299–312. doi: 10.1098/rstb.1990.0013. [DOI] [PubMed] [Google Scholar]
  25. Morata G. Homeotic genes of Drosophila. Curr Opin Genet Dev. 1993 Aug;3(4):606–614. doi: 10.1016/0959-437x(93)90096-8. [DOI] [PubMed] [Google Scholar]
  26. Morley B. J., Abbott C. A., Sharpe J. A., Lida J., Chan-Thomas P. S., Wood W. G. A single beta-globin locus control region element (5' hypersensitive site 2) is sufficient for developmental regulation of human globin genes in transgenic mice. Mol Cell Biol. 1992 May;12(5):2057–2066. doi: 10.1128/mcb.12.5.2057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morley B. J., Abbott C. A., Wood W. G. Regulation of human fetal and adult globin genes in mouse erythroleukemia cells. Blood. 1991 Sep 1;78(5):1355–1363. [PubMed] [Google Scholar]
  28. Neznanov N., Thorey I. S., Ceceña G., Oshima R. G. Transcriptional insulation of the human keratin 18 gene in transgenic mice. Mol Cell Biol. 1993 Apr;13(4):2214–2223. doi: 10.1128/mcb.13.4.2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Papayannopoulou T., Brice M., Stamatoyannopoulos G. Analysis of human hemoglobin switching in MEL x human fetal erythroid cell hybrids. Cell. 1986 Aug 1;46(3):469–476. doi: 10.1016/0092-8674(86)90667-7. [DOI] [PubMed] [Google Scholar]
  30. Paro R. Imprinting a determined state into the chromatin of Drosophila. Trends Genet. 1990 Dec;6(12):416–421. doi: 10.1016/0168-9525(90)90303-n. [DOI] [PubMed] [Google Scholar]
  31. Pillus L. An acquired state: epigenetic mechanisms in transcription. Curr Opin Cell Biol. 1992 Jun;4(3):453–458. doi: 10.1016/0955-0674(92)90011-z. [DOI] [PubMed] [Google Scholar]
  32. Pirrotta V., Rastelli L. White gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila. Bioessays. 1994 Aug;16(8):549–556. doi: 10.1002/bies.950160808. [DOI] [PubMed] [Google Scholar]
  33. Sidén T. S., Kumlien J., Schwartz C. E., Röhme D. Radiation fusion hybrids for human chromosomes 3 and X generated at various irradiation doses. Somat Cell Mol Genet. 1992 Jan;18(1):33–44. doi: 10.1007/BF01233447. [DOI] [PubMed] [Google Scholar]
  34. Spivak J. L., Toretti D., Dickerman H. W. Effect of phenylhydrazine-induced hemolytic anemia on nuclear RNA polymerase activity of the mouse spleen. Blood. 1973 Aug;42(2):257–266. [PubMed] [Google Scholar]
  35. Strouboulis J., Dillon N., Grosveld F. Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes Dev. 1992 Oct;6(10):1857–1864. doi: 10.1101/gad.6.10.1857. [DOI] [PubMed] [Google Scholar]
  36. Takegawa S., Brice M., Stamatoyannopoulos G., Papayannopoulou T. Only adult hemoglobin is produced in fetal nonerythroid x MEL cell hybrids. Blood. 1986 Dec;68(6):1384–1388. [PubMed] [Google Scholar]
  37. Townes T. M., Behringer R. R. Human globin locus activation region (LAR): role in temporal control. Trends Genet. 1990 Jul;6(7):219–223. doi: 10.1016/0168-9525(90)90182-6. [DOI] [PubMed] [Google Scholar]
  38. Walter M. A., Goodfellow P. N. Radiation hybrids: irradiation and fusion gene transfer. Trends Genet. 1993 Oct;9(10):352–356. doi: 10.1016/0168-9525(93)90040-o. [DOI] [PubMed] [Google Scholar]
  39. Wood W. G. HbF production in adult life. Prog Clin Biol Res. 1989;316B:251–267. [PubMed] [Google Scholar]
  40. Zinn K., DiMaio D., Maniatis T. Identification of two distinct regulatory regions adjacent to the human beta-interferon gene. Cell. 1983 Oct;34(3):865–879. doi: 10.1016/0092-8674(83)90544-5. [DOI] [PubMed] [Google Scholar]
  41. Zitnik G., Li Q., Stamatoyannopoulos G., Papayannopoulou T. Serum factors can modulate the developmental clock of gamma- to beta-globin gene switching in somatic cell hybrids. Mol Cell Biol. 1993 Aug;13(8):4844–4851. doi: 10.1128/mcb.13.8.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES