Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Aug;15(8):4009–4020. doi: 10.1128/mcb.15.8.4009

CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli.

D Kipling 1, A R Mitchell 1, H Masumoto 1, H E Wilson 1, L Nicol 1, H J Cooke 1
PMCID: PMC230640  PMID: 7623797

Abstract

Minor satellite DNA, found at Mus musculus centromeres, is not present in the genome of the Asian mouse Mus caroli. This repetitive sequence family is speculated to have a role in centromere function by providing an array of binding sites for the centromere-associated protein CENP-B. The apparent absence of CENP-B binding sites in the M. caroli genome poses a major challenge to this hypothesis. Here we describe two abundant satellite DNA sequences present at M. caroli centromeres. These satellites are organized as tandem repeat arrays, over 1 Mb in size, of either 60- or 79-bp monomers. All autosomes carry both satellites and small amounts of a sequence related to the M. musculus major satellite. The Y chromosome contains small amounts of both major satellite and the 60-bp satellite, whereas the X chromosome carries only major satellite sequences. M. caroli chromosomes segregate in M. caroli x M. musculus interspecific hybrid cell lines, indicating that the two sets of chromosomes can interact with the same mitotic spindle. Using a polyclonal CENP-B antiserum, we demonstrate that M. caroli centromeres can bind murine CENP-B in such an interspecific cell line, despite the absence of canonical 17-bp CENP-B binding sites in the M. caroli genome. Sequence analysis of the 79-bp M. caroli satellite reveals a 17-bp motif that contains all nine bases previously shown to be necessary for in vitro binding of CENP-B. This M. caroli motif binds CENP-B from HeLa cell nuclear extract in vitro, as indicated by gel mobility shift analysis. We therefore suggest that this motif also causes CENP-B to associate with M. caroli centromeres in vivo. Despite the sequence differences, M. caroli presents a third, novel mammalian centromeric sequence producing an array of binding sites for CENP-B.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allshire R. C., Cranston G., Gosden J. R., Maule J. C., Hastie N. D., Fantes P. A. A fission yeast chromosome can replicate autonomously in mouse cells. Cell. 1987 Jul 31;50(3):391–403. doi: 10.1016/0092-8674(87)90493-4. [DOI] [PubMed] [Google Scholar]
  2. Bernat R. L., Delannoy M. R., Rothfield N. F., Earnshaw W. C. Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell. 1991 Sep 20;66(6):1229–1238. doi: 10.1016/0092-8674(91)90045-z. [DOI] [PubMed] [Google Scholar]
  3. Blennow E., Telenius H., de Vos D., Larsson C., Henriksson P., Johansson O., Carter N. P., Nordenskjöld M. Tetrasomy 15q: two marker chromosomes with no detectable alpha-satellite DNA. Am J Hum Genet. 1994 May;54(5):877–883. [PMC free article] [PubMed] [Google Scholar]
  4. Bloom K. The centromere frontier: kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell. 1993 May 21;73(4):621–624. doi: 10.1016/0092-8674(93)90242-i. [DOI] [PubMed] [Google Scholar]
  5. Brinkley B. R., Ouspenski I., Zinkowski R. P. Structure and molecular organization of the centromere-kinetochore complex. Trends Cell Biol. 1992 Jan;2(1):15–21. doi: 10.1016/0962-8924(92)90139-e. [DOI] [PubMed] [Google Scholar]
  6. Broccoli D., Miller O. J., Miller D. A. Relationship of mouse minor satellite DNA to centromere activity. Cytogenet Cell Genet. 1990;54(3-4):182–186. doi: 10.1159/000132989. [DOI] [PubMed] [Google Scholar]
  7. Chapman V. M., Shows T. B. Somatic cell genetic evidence for X-chromosome linkage of three enzymes in the mouse. Nature. 1976 Feb 26;259(5545):665–667. doi: 10.1038/259665a0. [DOI] [PubMed] [Google Scholar]
  8. Clarke L. Centromeres of budding and fission yeasts. Trends Genet. 1990 May;6(5):150–154. doi: 10.1016/0168-9525(90)90149-z. [DOI] [PubMed] [Google Scholar]
  9. Dod B., Mottez E., Desmarais E., Bonhomme F., Roizés G. Concerted evolution of light satellite DNA in genus Mus implies amplification and homogenization of large blocks of repeats. Mol Biol Evol. 1989 Sep;6(5):478–491. doi: 10.1093/oxfordjournals.molbev.a040564. [DOI] [PubMed] [Google Scholar]
  10. Earnshaw W. C., Ratrie H., 3rd, Stetten G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma. 1989 Jun;98(1):1–12. doi: 10.1007/BF00293329. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Garagna S., Redi C. A., Capanna E., Andayani N., Alfano R. M., Doi P., Viale G. Genome distribution, chromosomal allocation, and organization of the major and minor satellite DNAs in 11 species and subspecies of the genus Mus. Cytogenet Cell Genet. 1993;64(3-4):247–255. doi: 10.1159/000133587. [DOI] [PubMed] [Google Scholar]
  13. Gooderham K., Jeppesen P. Chinese hamster metaphase chromosomes isolated under physiological conditions. A partial characterization of associated non-histone proteins and protein cores. Exp Cell Res. 1983 Mar;144(1):1–14. doi: 10.1016/0014-4827(83)90435-4. [DOI] [PubMed] [Google Scholar]
  14. Gosden J., Hanratty D., Starling J., Fantes J., Mitchell A., Porteous D. Oligonucleotide-primed in situ DNA synthesis (PRINS): a method for chromosome mapping, banding, and investigation of sequence organization. Cytogenet Cell Genet. 1991;57(2-3):100–104. doi: 10.1159/000133122. [DOI] [PubMed] [Google Scholar]
  15. Haaf T., Warburton P. E., Willard H. F. Integration of human alpha-satellite DNA into simian chromosomes: centromere protein binding and disruption of normal chromosome segregation. Cell. 1992 Aug 21;70(4):681–696. doi: 10.1016/0092-8674(92)90436-g. [DOI] [PubMed] [Google Scholar]
  16. Hegemann J. H., Fleig U. N. The centromere of budding yeast. Bioessays. 1993 Jul;15(7):451–460. doi: 10.1002/bies.950150704. [DOI] [PubMed] [Google Scholar]
  17. Hill A., Bloom K. Genetic manipulation of centromere function. Mol Cell Biol. 1987 Jul;7(7):2397–2405. doi: 10.1128/mcb.7.7.2397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hörz W., Altenburger W. Nucleotide sequence of mouse satellite DNA. Nucleic Acids Res. 1981 Feb 11;9(3):683–696. doi: 10.1093/nar/9.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jeppesen P., Mitchell A., Turner B., Perry P. Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes. Chromosoma. 1992 Mar;101(5-6):322–332. doi: 10.1007/BF00346011. [DOI] [PubMed] [Google Scholar]
  20. Joseph A., Mitchell A. R., Miller O. J. The organization of the mouse satellite DNA at centromeres. Exp Cell Res. 1989 Aug;183(2):494–500. doi: 10.1016/0014-4827(89)90408-4. [DOI] [PubMed] [Google Scholar]
  21. Kipling D., Ackford H. E., Taylor B. A., Cooke H. J. Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere. Genomics. 1991 Oct;11(2):235–241. doi: 10.1016/0888-7543(91)90128-2. [DOI] [PubMed] [Google Scholar]
  22. Kipling D., Cooke H. J. Hypervariable ultra-long telomeres in mice. Nature. 1990 Sep 27;347(6291):400–402. doi: 10.1038/347400a0. [DOI] [PubMed] [Google Scholar]
  23. Kipling D., Wilson H. E., Mitchell A. R., Taylor B. A., Cooke H. J. Mouse centromere mapping using oligonucleotide probes that detect variants of the minor satellite. Chromosoma. 1994 Mar;103(1):46–55. doi: 10.1007/BF00364725. [DOI] [PubMed] [Google Scholar]
  24. Kitagawa K., Masumoto H., Ikeda M., Okazaki T. Analysis of protein-DNA and protein-protein interactions of centromere protein B (CENP-B) and properties of the DNA-CENP-B complex in the cell cycle. Mol Cell Biol. 1995 Mar;15(3):1602–1612. doi: 10.1128/mcb.15.3.1602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koch J. E., Kølvraa S., Petersen K. B., Gregersen N., Bolund L. Oligonucleotide-priming methods for the chromosome-specific labelling of alpha satellite DNA in situ. Chromosoma. 1989 Oct;98(4):259–265. doi: 10.1007/BF00327311. [DOI] [PubMed] [Google Scholar]
  26. Larin Z., Fricker M. D., Tyler-Smith C. De novo formation of several features of a centromere following introduction of a Y alphoid YAC into mammalian cells. Hum Mol Genet. 1994 May;3(5):689–695. doi: 10.1093/hmg/3.5.689. [DOI] [PubMed] [Google Scholar]
  27. Masumoto H., Masukata H., Muro Y., Nozaki N., Okazaki T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol. 1989 Nov;109(5):1963–1973. doi: 10.1083/jcb.109.5.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mitchell A. R., Nicol L., Malloy P., Kipling D. Novel structural organisation of a Mus musculus DBA/2 chromosome shows a fixed position for the centromere. J Cell Sci. 1993 Sep;106(Pt 1):79–85. doi: 10.1242/jcs.106.1.79. [DOI] [PubMed] [Google Scholar]
  29. Mitchell A., Jeppesen P., Hanratty D., Gosden J. The organisation of repetitive DNA sequences on human chromosomes with respect to the kinetochore analysed using a combination of oligonucleotide primers and CREST anticentromere serum. Chromosoma. 1992 Mar;101(5-6):333–341. doi: 10.1007/BF00346012. [DOI] [PubMed] [Google Scholar]
  30. Moens P. B., Pearlman R. E. Telomere and centromere DNA are associated with the cores of meiotic prophase chromosomes. Chromosoma. 1990 Dec;100(1):8–14. doi: 10.1007/BF00337598. [DOI] [PubMed] [Google Scholar]
  31. Muro Y., Masumoto H., Yoda K., Nozaki N., Ohashi M., Okazaki T. Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box. J Cell Biol. 1992 Feb;116(3):585–596. doi: 10.1083/jcb.116.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Narayanswami S., Doggett N. A., Clark L. M., Hildebrand C. E., Weier H. U., Hamkalo B. A. Cytological and molecular characterization of centromeres in Mus domesticus and Mus spretus. Mamm Genome. 1992;2(3):186–194. doi: 10.1007/BF00302876. [DOI] [PubMed] [Google Scholar]
  33. Nicklas R. B. The motor for poleward chromosome movement in anaphase is in or near the kinetochore. J Cell Biol. 1989 Nov;109(5):2245–2255. doi: 10.1083/jcb.109.5.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nicol L., Jeppesen P. Human autoimmune sera recognize a conserved 26 kD protein associated with mammalian heterochromatin that is homologous to heterochromatin protein 1 of Drosophila. Chromosome Res. 1994 May;2(3):245–253. doi: 10.1007/BF01553325. [DOI] [PubMed] [Google Scholar]
  35. Nishioka Y. Genome comparison in the genus Mus: a study with B1, MIF (mouse interspersed fragment), centromeric, and Y-chromosomal repetitive sequences. Cytogenet Cell Genet. 1989;50(4):195–200. doi: 10.1159/000132759. [DOI] [PubMed] [Google Scholar]
  36. Ohashi H., Wakui K., Ogawa K., Okano T., Niikawa N., Fukushima Y. A stable acentric marker chromosome: possible existence of an intercalary ancient centromere at distal 8p. Am J Hum Genet. 1994 Dec;55(6):1202–1208. [PMC free article] [PubMed] [Google Scholar]
  37. Pietras D. F., Bennett K. L., Siracusa L. D., Woodworth-Gutai M., Chapman V. M., Gross K. W., Kane-Haas C., Hastie N. D. Construction of a small Mus musculus repetitive DNA library: identification of a new satellite sequence in Mus musculus. Nucleic Acids Res. 1983 Oct 25;11(20):6965–6983. doi: 10.1093/nar/11.20.6965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pluta A. F., Cooke C. A., Earnshaw W. C. Structure of the human centromere at metaphase. Trends Biochem Sci. 1990 May;15(5):181–185. doi: 10.1016/0968-0004(90)90158-8. [DOI] [PubMed] [Google Scholar]
  39. Rattner J. B. The structure of the mammalian centromere. Bioessays. 1991 Feb;13(2):51–56. doi: 10.1002/bies.950130202. [DOI] [PubMed] [Google Scholar]
  40. Rice N. R., Straus N. A. Relatedness of mouse satellite deoxyribonucleic acid to deoxyribonucleic acid of various Mus species. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3546–3550. doi: 10.1073/pnas.70.12.3546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schulman I., Bloom K. S. Centromeres: an integrated protein/DNA complex required for chromosome movement. Annu Rev Cell Biol. 1991;7:311–336. doi: 10.1146/annurev.cb.07.110191.001523. [DOI] [PubMed] [Google Scholar]
  42. Siracusa L. D., Chapman V. M., Bennett K. L., Hastie N. D., Pietras D. F., Rossant J. Use of repetitive DNA sequences to distinguish Mus musculus and Mus caroli cells by in situ hybridization. J Embryol Exp Morphol. 1983 Feb;73:163–178. [PubMed] [Google Scholar]
  43. Strauss F., Varshavsky A. A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome. Cell. 1984 Jul;37(3):889–901. doi: 10.1016/0092-8674(84)90424-0. [DOI] [PubMed] [Google Scholar]
  44. Sullivan K. F., Glass C. A. CENP-B is a highly conserved mammalian centromere protein with homology to the helix-loop-helix family of proteins. Chromosoma. 1991 Jul;100(6):360–370. doi: 10.1007/BF00337514. [DOI] [PubMed] [Google Scholar]
  45. Sutton W. D., McCallum M. Related satellite DNA's in the genus Mus. J Mol Biol. 1972 Nov 28;71(3):633–652. doi: 10.1016/s0022-2836(72)80028-7. [DOI] [PubMed] [Google Scholar]
  46. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tyler-Smith C., Willard H. F. Mammalian chromosome structure. Curr Opin Genet Dev. 1993 Jun;3(3):390–397. doi: 10.1016/0959-437x(93)90110-b. [DOI] [PubMed] [Google Scholar]
  48. Vissel B., Choo K. H. Mouse major (gamma) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics. 1989 Oct;5(3):407–414. doi: 10.1016/0888-7543(89)90003-7. [DOI] [PubMed] [Google Scholar]
  49. Voullaire L. E., Slater H. R., Petrovic V., Choo K. H. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet. 1993 Jun;52(6):1153–1163. [PMC free article] [PubMed] [Google Scholar]
  50. West J. D., Frels W. I., Papaioannou V. E., Karr J. P., Chapman V. M. Development of interspecific hybrids of Mus. J Embryol Exp Morphol. 1977 Oct;41:233–243. [PubMed] [Google Scholar]
  51. Wevrick R., Earnshaw W. C., Howard-Peebles P. N., Willard H. F. Partial deletion of alpha satellite DNA associated with reduced amounts of the centromere protein CENP-B in a mitotically stable human chromosome rearrangement. Mol Cell Biol. 1990 Dec;10(12):6374–6380. doi: 10.1128/mcb.10.12.6374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wong A. K., Biddle F. G., Rattner J. B. The chromosomal distribution of the major and minor satellite is not conserved in the genus Mus. Chromosoma. 1990 Jul;99(3):190–195. doi: 10.1007/BF01731129. [DOI] [PubMed] [Google Scholar]
  53. Wong A. K., Rattner J. B. Sequence organization and cytological localization of the minor satellite of mouse. Nucleic Acids Res. 1988 Dec 23;16(24):11645–11661. doi: 10.1093/nar/16.24.11645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yoda K., Kitagawa K., Masumoto H., Muro Y., Okazaki T. A human centromere protein, CENP-B, has a DNA binding domain containing four potential alpha helices at the NH2 terminus, which is separable from dimerizing activity. J Cell Biol. 1992 Dec;119(6):1413–1427. doi: 10.1083/jcb.119.6.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES