Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Aug;15(8):4572–4577. doi: 10.1128/mcb.15.8.4572

An alternative eukaryotic DNA excision repair pathway.

G A Freyer 1, S Davey 1, J V Ferrer 1, A M Martin 1, D Beach 1, P W Doetsch 1
PMCID: PMC230697  PMID: 7623848

Abstract

DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe.

Full Text

The Full Text of this article is available as a PDF (328.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboussekhra A., Wood R. D. Repair of UV-damaged DNA by mammalian cells and Saccharomyces cerevisiae. Curr Opin Genet Dev. 1994 Apr;4(2):212–220. doi: 10.1016/s0959-437x(05)80047-4. [DOI] [PubMed] [Google Scholar]
  2. Birkenbihl R. P., Subramani S. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res. 1992 Dec 25;20(24):6605–6611. doi: 10.1093/nar/20.24.6605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnboim H. C., Nasim A. Excision of pyrimidine dimers by several UV-sensitive mutants of S. pombe. Mol Gen Genet. 1975;136(1):1–8. doi: 10.1007/BF00275444. [DOI] [PubMed] [Google Scholar]
  4. Bowman K. K., Sidik K., Smith C. A., Taylor J. S., Doetsch P. W., Freyer G. A. A new ATP-independent DNA endonuclease from Schizosaccharomyces pombe that recognizes cyclobutane pyrimidine dimers and 6-4 photoproducts. Nucleic Acids Res. 1994 Aug 11;22(15):3026–3032. doi: 10.1093/nar/22.15.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carr A. M., Sheldrick K. S., Murray J. M., al-Harithy R., Watts F. Z., Lehmann A. R. Evolutionary conservation of excision repair in Schizosaccharomyces pombe: evidence for a family of sequences related to the Saccharomyces cerevisiae RAD2 gene. Nucleic Acids Res. 1993 Mar 25;21(6):1345–1349. doi: 10.1093/nar/21.6.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cleaver J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968 May 18;218(5142):652–656. doi: 10.1038/218652a0. [DOI] [PubMed] [Google Scholar]
  7. Doe C. L., Murray J. M., Shayeghi M., Hoskins M., Lehmann A. R., Carr A. M., Watts F. Z. Cloning and characterisation of the Schizosaccharomyces pombe rad8 gene, a member of the SNF2 helicase family. Nucleic Acids Res. 1993 Dec 25;21(25):5964–5971. doi: 10.1093/nar/21.25.5964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fishel R., Ewel A., Lee S., Lescoe M. K., Griffith J. Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science. 1994 Nov 25;266(5189):1403–1405. doi: 10.1126/science.7973733. [DOI] [PubMed] [Google Scholar]
  9. Friedberg E. C. DNA repair: looking back and peering forward. Bioessays. 1994 Sep;16(9):645–649. doi: 10.1002/bies.950160909. [DOI] [PubMed] [Google Scholar]
  10. Ganesan A. K. Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli K12. J Mol Biol. 1974 Jul 25;87(1):103–119. doi: 10.1016/0022-2836(74)90563-4. [DOI] [PubMed] [Google Scholar]
  11. Hoeijmakers J. H., Bootsma D. DNA repair. Incisions for excision. Nature. 1994 Oct 20;371(6499):654–655. doi: 10.1038/371654a0. [DOI] [PubMed] [Google Scholar]
  12. Huang J. C., Svoboda D. L., Reardon J. T., Sancar A. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 6th phosphodiester bond 3' to the photodimer. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3664–3668. doi: 10.1073/pnas.89.8.3664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kraemer K. H., Levy D. D., Parris C. N., Gozukara E. M., Moriwaki S., Adelberg S., Seidman M. M. Xeroderma pigmentosum and related disorders: examining the linkage between defective DNA repair and cancer. J Invest Dermatol. 1994 Nov;103(5 Suppl):96S–101S. doi: 10.1111/1523-1747.ep12399329. [DOI] [PubMed] [Google Scholar]
  14. Lieberman H. B., Hopkins K. M., Laverty M., Chu H. M. Molecular cloning and analysis of Schizosaccharomyces pombe rad9, a gene involved in DNA repair and mutagenesis. Mol Gen Genet. 1992 Apr;232(3):367–376. doi: 10.1007/BF00266239. [DOI] [PubMed] [Google Scholar]
  15. Lieberman H. B., Riley R., Martel M. Isolation and initial characterization of a Schizosaccharomyces pombe mutant exhibiting temperature-dependent radiation sensitivity due to a mutation in a previously unidentified rad locus. Mol Gen Genet. 1989 Sep;218(3):554–558. doi: 10.1007/BF00332423. [DOI] [PubMed] [Google Scholar]
  16. Lindahl T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog Nucleic Acid Res Mol Biol. 1979;22:135–192. doi: 10.1016/s0079-6603(08)60800-4. [DOI] [PubMed] [Google Scholar]
  17. McCready S., Carr A. M., Lehmann A. R. Repair of cyclobutane pyrimidine dimers and 6-4 photoproducts in the fission yeast Schizosaccharomyces pombe. Mol Microbiol. 1993 Nov;10(4):885–890. doi: 10.1111/j.1365-2958.1993.tb00959.x. [DOI] [PubMed] [Google Scholar]
  18. Murray J. M., Doe C. L., Schenk P., Carr A. M., Lehmann A. R., Watts F. Z. Cloning and characterisation of the S. pombe rad15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 genes. Nucleic Acids Res. 1992 Jun 11;20(11):2673–2678. doi: 10.1093/nar/20.11.2673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murray J. M., Tavassoli M., al-Harithy R., Sheldrick K. S., Lehmann A. R., Carr A. M., Watts F. Z. Structural and functional conservation of the human homolog of the Schizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage. Mol Cell Biol. 1994 Jul;14(7):4878–4888. doi: 10.1128/mcb.14.7.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ostermann K., Lorentz A., Schmidt H. The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 of Saccharomyces cerevisiae. Nucleic Acids Res. 1993 Dec 25;21(25):5940–5944. doi: 10.1093/nar/21.25.5940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Phipps J., Nasim A., Miller D. R. Recovery, repair, and mutagenesis in Schizosaccharomyces pombe. Adv Genet. 1985;23:1–72. doi: 10.1016/s0065-2660(08)60511-8. [DOI] [PubMed] [Google Scholar]
  22. Sancar A., Rupp W. D. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell. 1983 May;33(1):249–260. doi: 10.1016/0092-8674(83)90354-9. [DOI] [PubMed] [Google Scholar]
  23. Sancar A., Tang M. S. Nucleotide excision repair. Photochem Photobiol. 1993 May;57(5):905–921. doi: 10.1111/j.1751-1097.1993.tb09233.x. [DOI] [PubMed] [Google Scholar]
  24. Scherly D., Nouspikel T., Corlet J., Ucla C., Bairoch A., Clarkson S. G. Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature. 1993 May 13;363(6425):182–185. doi: 10.1038/363182a0. [DOI] [PubMed] [Google Scholar]
  25. Schlake C., Ostermann K., Schmidt H., Gutz H. Analysis of DNA repair pathways of Schizosaccharomyces pombe by means of swi-rad double mutants. Mutat Res. 1993 Jun;294(1):59–67. doi: 10.1016/0921-8777(93)90058-o. [DOI] [PubMed] [Google Scholar]
  26. Sidik K., Lieberman H. B., Freyer G. A. Repair of DNA damaged by UV light and ionizing radiation by cell-free extracts prepared from Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12112–12116. doi: 10.1073/pnas.89.24.12112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith C. A., Taylor J. S. Preparation and characterization of a set of deoxyoligonucleotide 49-mers containing site-specific cis-syn, trans-syn-I, (6-4), and Dewar photoproducts of thymidylyl(3'-->5')-thymidine. J Biol Chem. 1993 May 25;268(15):11143–11151. [PubMed] [Google Scholar]
  28. Strathern J. N., Weinstock K. G., Higgins D. R., McGill C. B. A novel recombinator in yeast based on gene II protein from bacteriophage f1. Genetics. 1991 Jan;127(1):61–73. doi: 10.1093/genetics/127.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tanaka K., Wood R. D. Xeroderma pigmentosum and nucleotide excision repair of DNA. Trends Biochem Sci. 1994 Feb;19(2):83–86. doi: 10.1016/0968-0004(94)90040-X. [DOI] [PubMed] [Google Scholar]
  30. Tsurimoto T., Stillman B. Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J Biol Chem. 1991 Jan 25;266(3):1950–1960. [PubMed] [Google Scholar]
  31. Vermeulen W., Stefanini M., Giliani S., Hoeijmakers J. H., Bootsma D. Xeroderma pigmentosum complementation group H falls into complementation group D. Mutat Res. 1991 Sep;255(2):201–208. doi: 10.1016/0921-8777(91)90054-s. [DOI] [PubMed] [Google Scholar]
  32. Yajima H., Takao M., Yasuhira S., Zhao J. H., Ishii C., Inoue H., Yasui A. A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light. EMBO J. 1995 May 15;14(10):2393–2399. doi: 10.1002/j.1460-2075.1995.tb07234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. al-Khodairy F., Fotou E., Sheldrick K. S., Griffiths D. J., Lehmann A. R., Carr A. M. Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol Biol Cell. 1994 Feb;5(2):147–160. doi: 10.1091/mbc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES