Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Sep;15(9):4771–4782. doi: 10.1128/mcb.15.9.4771

Functional effects of a natural polymorphism in the transcriptional regulatory sequence of HLA-DQB1.

J S Beaty 1, K A West 1, G T Nepom 1
PMCID: PMC230721  PMID: 7651394

Abstract

DNA sequence polymorphism in the genes encoding HLA class II proteins accounts for allelic diversity in antigen recognition and presentation and, thus, in the role of these cell surface glycoproteins as determinants of the scope of the T-cell repertoire. In addition, sequence polymorphism in the promoter-proximal transcriptional regulatory regions of these genes has been described, particularly for the HLA-DQB1 locus, where these differences may contribute to variation in locus- and allele-specific expression. In this study, we measured the effect of such regulatory sequence polymorphism on the expression of endogenous alleles of DQB1 in heterozygous cells. Quantitative reverse transcriptase-mediated PCR analysis showed that expression of the DQB1*0301 allele responded more rapidly to gamma interferon induction than that of DQB1*0302. We have analyzed functional effects of a prominent allelic polymorphism that consists of a TG dinucleotide present between the W and X1 consensus elements in the DQB1*0302 allele but missing in the DQB1*0301 allele. The dominant effect of this polymorphism was to introduce a variation in the spacing between the W and X1 elements of these two alleles. A secondary compensatory effect was specific for the TG dinucleotide itself, which was essential for the binding of a nuclear protein complex to the *0302 regulatory region immediately 5' of the X1 element. Derivatives of the DQB1 5' regulatory region were used to drive expression of the chloramphenicol acetyltransferase gene in transient transfections of human B-lymphoblastoid and gamma interferon-treated melanoma cell lines, demonstrating that the additional spacing between the W and X1 elements caused by the presence of the TG dinucleotide in the *0302 allele resulted in reduced expression compared with that driven by the *0301 fragment; this difference overshadowed an up-regulating effect on expression which corresponded to the binding of the TG-dependent nuclear protein complex. The presence of this polymorphism in multiple HLA-DQB1 alleles and in several species suggests selection for two alternative transcriptional regulatory mechanisms influencing expression of alleles of the same HLA locus.

Full Text

The Full Text of this article is available as a PDF (647.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen L. C., Beaty J. S., Nettles J. W., Seyfried C. E., Nepom G. T., Nepoom B. S. Allelic polymorphism in transcriptional regulatory regions of HLA-DQB genes. J Exp Med. 1991 Jan 1;173(1):181–192. doi: 10.1084/jem.173.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anichini A., Castelli C., Sozzi G., Fossati G., Parmiani G. Differential susceptibility to recombinant interferon-gamma-induced HLA-DQ antigen modulation among clones from a human metastatic melanoma. J Immunol. 1988 Jan 1;140(1):183–191. [PubMed] [Google Scholar]
  3. Benoist C., Mathis D. Regulation of major histocompatibility complex class-II genes: X, Y and other letters of the alphabet. Annu Rev Immunol. 1990;8:681–715. doi: 10.1146/annurev.iy.08.040190.003341. [DOI] [PubMed] [Google Scholar]
  4. Buus S., Sette A., Colon S. M., Miles C., Grey H. M. The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science. 1987 Mar 13;235(4794):1353–1358. doi: 10.1126/science.2435001. [DOI] [PubMed] [Google Scholar]
  5. Celada A., Shiga M., Imagawa M., Kop J., Maki R. A. Identification of a nuclear factor that binds to a conserved sequence of the I-A beta gene. J Immunol. 1988 Jun 1;140(11):3995–4002. [PubMed] [Google Scholar]
  6. Cogswell J. P., Zeleznik-Le N., Ting J. P. Transcriptional regulation of the HLA-DRA gene. Crit Rev Immunol. 1991;11(2):87–112. [PubMed] [Google Scholar]
  7. Dukas K., Sarfati P., Vaysse N., Pradayrol L. Quantitation of changes in the expression of multiple genes by simultaneous polymerase chain reaction. Anal Biochem. 1993 Nov 15;215(1):66–72. doi: 10.1006/abio.1993.1555. [DOI] [PubMed] [Google Scholar]
  8. Durand B., Kobr M., Reith W., Mach B. Functional complementation of major histocompatibility complex class II regulatory mutants by the purified X-box-binding protein RFX. Mol Cell Biol. 1994 Oct;14(10):6839–6847. doi: 10.1128/mcb.14.10.6839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glimcher L. H., Kara C. J. Sequences and factors: a guide to MHC class-II transcription. Annu Rev Immunol. 1992;10:13–49. doi: 10.1146/annurev.iy.10.040192.000305. [DOI] [PubMed] [Google Scholar]
  10. Groenen M. A., van der Poel J. J., Dijkhof R. J., Giphart M. J. The nucleotide sequence of bovine MHC class II DQB and DRB genes. Immunogenetics. 1990;31(1):37–44. doi: 10.1007/BF00702487. [DOI] [PubMed] [Google Scholar]
  11. Hattori M., Sakaki Y. Dideoxy sequencing method using denatured plasmid templates. Anal Biochem. 1986 Feb 1;152(2):232–238. doi: 10.1016/0003-2697(86)90403-3. [DOI] [PubMed] [Google Scholar]
  12. Hennighausen L., Lubon H. Interaction of protein with DNA in vitro. Methods Enzymol. 1987;152:721–735. doi: 10.1016/0076-6879(87)52076-6. [DOI] [PubMed] [Google Scholar]
  13. Herrero Sanchez C., Reith W., Silacci P., Mach B. The DNA-binding defect observed in major histocompatibility complex class II regulatory mutants concerns only one member of a family of complexes binding to the X boxes of class II promoters. Mol Cell Biol. 1992 Sep;12(9):4076–4083. doi: 10.1128/mcb.12.9.4076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Itoh-Lindstrom Y., Peterlin B. M., Ting J. P. Affinity enrichment and functional characterization of TRAX1, a novel transcription activator and X1-sequence-binding protein of HLA-DRA. Mol Cell Biol. 1995 Jan;15(1):282–289. doi: 10.1128/mcb.15.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kappler J. W., Roehm N., Marrack P. T cell tolerance by clonal elimination in the thymus. Cell. 1987 Apr 24;49(2):273–280. doi: 10.1016/0092-8674(87)90568-x. [DOI] [PubMed] [Google Scholar]
  16. Kaufman J. F., Auffray C., Korman A. J., Shackelford D. A., Strominger J. The class II molecules of the human and murine major histocompatibility complex. Cell. 1984 Jan;36(1):1–13. doi: 10.1016/0092-8674(84)90068-0. [DOI] [PubMed] [Google Scholar]
  17. Kwok W. W., Schwarz D., Nepom B. S., Hock R. A., Thurtle P. S., Nepom G. T. HLA-DQ molecules form alpha-beta heterodimers of mixed allotype. J Immunol. 1988 Nov 1;141(9):3123–3127. [PubMed] [Google Scholar]
  18. Liou H. C., Boothby M. R., Finn P. W., Davidon R., Nabavi N., Zeleznik-Le N. J., Ting J. P., Glimcher L. H. A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. Science. 1990 Mar 30;247(4950):1581–1584. doi: 10.1126/science.2321018. [DOI] [PubMed] [Google Scholar]
  19. Lopata M. A., Cleveland D. W., Sollner-Webb B. High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment. Nucleic Acids Res. 1984 Jul 25;12(14):5707–5717. doi: 10.1093/nar/12.14.5707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Louis P., Vincent R., Cavadore P., Clot J., Eliaou J. F. Differential transcriptional activities of HLA-DR genes in the various haplotypes. J Immunol. 1994 Dec 1;153(11):5059–5067. [PubMed] [Google Scholar]
  21. Marsh S. G., Bodmer J. G. HLA class II nucleotide sequences, 1992. Hum Immunol. 1992 Sep;35(1):1–17. doi: 10.1016/0198-8859(92)90090-a. [DOI] [PubMed] [Google Scholar]
  22. Matis L. A., Glimcher L. H., Paul W. E., Schwartz R. H. Magnitude of response of histocompatibility-restricted T-cell clones is a function of the product of the concentrations of antigen and Ia molecules. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6019–6023. doi: 10.1073/pnas.80.19.6019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  24. Morzycka-Wroblewska E., Harwood J. I., Smith J. R., Kagnoff M. F. Structure and evolution of the promoter regions of the DQA genes. Immunogenetics. 1993;37(5):364–372. doi: 10.1007/BF00216801. [DOI] [PubMed] [Google Scholar]
  25. Mueller P. R., Wold B. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science. 1989 Nov 10;246(4931):780–786. doi: 10.1126/science.2814500. [DOI] [PubMed] [Google Scholar]
  26. Nepom G. T. A unified hypothesis for the complex genetics of HLA associations with IDDM. Diabetes. 1990 Oct;39(10):1153–1157. doi: 10.2337/diab.39.10.1153. [DOI] [PubMed] [Google Scholar]
  27. Peterlin B. M., Andersson G., Lötscher E., Tsang S. Transcriptional regulation of HLA class-II genes. Immunol Res. 1990;9(3):164–177. doi: 10.1007/BF02918176. [DOI] [PubMed] [Google Scholar]
  28. Reith W., Kobr M., Emery P., Durand B., Siegrist C. A., Mach B. Cooperative binding between factors RFX and X2bp to the X and X2 boxes of MHC class II promoters. J Biol Chem. 1994 Aug 5;269(31):20020–20025. [PubMed] [Google Scholar]
  29. Reith W., Satola S., Sanchez C. H., Amaldi I., Lisowska-Grospierre B., Griscelli C., Hadam M. R., Mach B. Congenital immunodeficiency with a regulatory defect in MHC class II gene expression lacks a specific HLA-DR promoter binding protein, RF-X. Cell. 1988 Jun 17;53(6):897–906. doi: 10.1016/s0092-8674(88)90389-3. [DOI] [PubMed] [Google Scholar]
  30. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  31. Schleif R. DNA looping. Annu Rev Biochem. 1992;61:199–223. doi: 10.1146/annurev.bi.61.070192.001215. [DOI] [PubMed] [Google Scholar]
  32. Shapiro D. J., Sharp P. A., Wahli W. W., Keller M. J. A high-efficiency HeLa cell nuclear transcription extract. DNA. 1988 Jan-Feb;7(1):47–55. doi: 10.1089/dna.1988.7.47. [DOI] [PubMed] [Google Scholar]
  33. Sleigh M. J. A nonchromatographic assay for expression of the chloramphenicol acetyltransferase gene in eucaryotic cells. Anal Biochem. 1986 Jul;156(1):251–256. doi: 10.1016/0003-2697(86)90180-6. [DOI] [PubMed] [Google Scholar]
  34. Song Z., Krishna S., Thanos D., Strominger J. L., Ono S. J. A novel cysteine-rich sequence-specific DNA-binding protein interacts with the conserved X-box motif of the human major histocompatibility complex class II genes via a repeated Cys-His domain and functions as a transcriptional repressor. J Exp Med. 1994 Nov 1;180(5):1763–1774. doi: 10.1084/jem.180.5.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Steimle V., Otten L. A., Zufferey M., Mach B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell. 1993 Oct 8;75(1):135–146. [PubMed] [Google Scholar]
  36. Steimle V., Siegrist C. A., Mottet A., Lisowska-Grospierre B., Mach B. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science. 1994 Jul 1;265(5168):106–109. doi: 10.1126/science.8016643. [DOI] [PubMed] [Google Scholar]
  37. Sugawara M., Ponath P. D., Shin J., Yang Z., Strominger J. L. Delineation of a previously unrecognized cis-acting element required for HLA class II gene expression. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10347–10351. doi: 10.1073/pnas.88.22.10347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sukiennicki T. L., Shewey L. M., Nepom G. T. Locus- and allele-specific DNA-protein interactions in the HLA-DQB1 X box. Immunol Res. 1993;12(4):317–329. doi: 10.1007/BF02935505. [DOI] [PubMed] [Google Scholar]
  39. Ting J. P., Painter A., Zeleznik-Le N. J., MacDonald G., Moore T. M., Brown A., Schwartz B. D. YB-1 DNA-binding protein represses interferon gamma activation of class II major histocompatibility complex genes. J Exp Med. 1994 May 1;179(5):1605–1611. doi: 10.1084/jem.179.5.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Todd J. A., Bell J. I., McDevitt H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987 Oct 15;329(6140):599–604. doi: 10.1038/329599a0. [DOI] [PubMed] [Google Scholar]
  41. Turco E., Manfras B. J., Ge L., Rudert W. A., Trucco M. The X boxes from promoters of HLA class II B genes at different loci do not complete for nuclear protein-specific binding. Immunogenetics. 1990;32(2):117–128. doi: 10.1007/BF00210449. [DOI] [PubMed] [Google Scholar]
  42. Vilen B. J., Penta J. F., Ting J. P. Structural constraints within a trimeric transcriptional regulatory region. Constitutive and interferon-gamma-inducible expression of the HLA-DRA gene. J Biol Chem. 1992 Nov 25;267(33):23728–23734. [PubMed] [Google Scholar]
  43. Wigler M., Pellicer A., Silverstein S., Axel R. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell. 1978 Jul;14(3):725–731. doi: 10.1016/0092-8674(78)90254-4. [DOI] [PubMed] [Google Scholar]
  44. Wright K. L., Vilen B. J., Itoh-Lindstrom Y., Moore T. L., Li G., Criscitiello M., Cogswell P., Clarke J. B., Ting J. P. CCAAT box binding protein NF-Y facilitates in vivo recruitment of upstream DNA binding transcription factors. EMBO J. 1994 Sep 1;13(17):4042–4053. doi: 10.1002/j.1460-2075.1994.tb06721.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES