Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Sep;15(9):4884–4889. doi: 10.1128/mcb.15.9.4884

Leishmania RNA virus 1-mediated cap-independent translation.

J A Maga 1, G Widmer 1, J H LeBowitz 1
PMCID: PMC230734  PMID: 7651407

Abstract

Recently, a group of related Leishmania RNA viruses (Leishmania RNA virus 1 [LRV1]) has been isolated from Leishmania guyanensis and L. brasiliensis. These viruses persist in the cytoplasm and contain double-stranded RNA genomes. Miniexon sequences are absent from the 5' end of the viral RNA, and the 5' end of the viral RNA lacks a cap structure, suggesting that LRV1 has evolved a cap-independent mechanism of translation. Cap-independent translation of picornavirus genomic RNA requires a cis element, within the 5' untranslated region (UTR), referred to as an internal ribosome entry site (IRES). In order to find out if the 5' UTR of LRV1 possessed IRES activity, we modified a Leishmania expression vector, pX63NEO-GUS, so that it would produce a dicistronic transcript in which the neomycin phosphotransferase gene was separated from the downstream beta-glucuronidase (GUS) gene by the LRV1 5' UTR. High levels of GUS activity were detected in L. major stably transformed with this plasmid. Elimination of the first 120 nucleotides of the viral 5' UTR lowered GUS activity 10-fold. Furthermore, when the entire 5' UTR was eliminated, GUS activity was undetectable. These results, together with the absence of trans-spliced GUS transcripts, are consistent with the hypothesis that the 5' UTR of LRV1 functions as an IRES element. The ability to couple expression of genes via an IRES element should prove useful in genetic experiments with Leishmania spp.

Full Text

The Full Text of this article is available as a PDF (273.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agabian N. Trans splicing of nuclear pre-mRNAs. Cell. 1990 Jun 29;61(7):1157–1160. doi: 10.1016/0092-8674(90)90674-4. [DOI] [PubMed] [Google Scholar]
  2. Alexander L., Lu H. H., Wimmer E. Polioviruses containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1406–1410. doi: 10.1073/pnas.91.4.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cadd T. L., Patterson J. L. Synthesis of viruslike particles by expression of the putative capsid protein of Leishmania RNA virus in a recombinant baculovirus expression system. J Virol. 1994 Jan;68(1):358–365. doi: 10.1128/jvi.68.1.358-365.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen C. Y., Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 1995 Apr 21;268(5209):415–417. doi: 10.1126/science.7536344. [DOI] [PubMed] [Google Scholar]
  5. Cruz A., Coburn C. M., Beverley S. M. Double targeted gene replacement for creating null mutants. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7170–7174. doi: 10.1073/pnas.88.16.7170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elroy-Stein O., Fuerst T. R., Moss B. Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5' sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6126–6130. doi: 10.1073/pnas.86.16.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evstafieva A. G., Beletsky A. V., Borovjagin A. V., Bogdanov A. A. Internal ribosome entry site of encephalomyocarditis virus RNA is unable to direct translation in Saccharomyces cerevisiae. FEBS Lett. 1993 Dec 6;335(2):273–276. doi: 10.1016/0014-5793(93)80745-g. [DOI] [PubMed] [Google Scholar]
  8. Ghattas I. R., Sanes J. R., Majors J. E. The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol. 1991 Dec;11(12):5848–5859. doi: 10.1128/mcb.11.12.5848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glass M. J., Summers D. F. Identification of a trans-acting activity from liver that stimulates hepatitis A virus translation in vitro. Virology. 1993 Apr;193(2):1047–1050. doi: 10.1006/viro.1993.1225. [DOI] [PubMed] [Google Scholar]
  10. Huang J., Van der Ploeg L. H. Requirement of a polypyrimidine tract for trans-splicing in trypanosomes: discriminating the PARP promoter from the immediately adjacent 3' splice acceptor site. EMBO J. 1991 Dec;10(12):3877–3885. doi: 10.1002/j.1460-2075.1991.tb04957.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jang S. K., Davies M. V., Kaufman R. J., Wimmer E. Initiation of protein synthesis by internal entry of ribosomes into the 5' nontranslated region of encephalomyocarditis virus RNA in vivo. J Virol. 1989 Apr;63(4):1651–1660. doi: 10.1128/jvi.63.4.1651-1660.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jang S. K., Kräusslich H. G., Nicklin M. J., Duke G. M., Palmenberg A. C., Wimmer E. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol. 1988 Aug;62(8):2636–2643. doi: 10.1128/jvi.62.8.2636-2643.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kapler G. M., Coburn C. M., Beverley S. M. Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Mol Cell Biol. 1990 Mar;10(3):1084–1094. doi: 10.1128/mcb.10.3.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim D. G., Kang H. M., Jang S. K., Shin H. S. Construction of a bifunctional mRNA in the mouse by using the internal ribosomal entry site of the encephalomyocarditis virus. Mol Cell Biol. 1992 Aug;12(8):3636–3643. doi: 10.1128/mcb.12.8.3636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
  17. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LeBowitz J. H., Coburn C. M., Beverley S. M. Simultaneous transient expression assays of the trypanosomatid parasite Leishmania using beta-galactosidase and beta-glucuronidase as reporter enzymes. Gene. 1991 Jul 15;103(1):119–123. doi: 10.1016/0378-1119(91)90402-w. [DOI] [PubMed] [Google Scholar]
  19. LeBowitz J. H., Smith H. Q., Rusche L., Beverley S. M. Coupling of poly(A) site selection and trans-splicing in Leishmania. Genes Dev. 1993 Jun;7(6):996–1007. doi: 10.1101/gad.7.6.996. [DOI] [PubMed] [Google Scholar]
  20. MacBeth K. J., Patterson J. L. The short transcript of Leishmania RNA virus is generated by RNA cleavage. J Virol. 1995 Jun;69(6):3458–3464. doi: 10.1128/jvi.69.6.3458-3464.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McBratney S., Chen C. Y., Sarnow P. Internal initiation of translation. Curr Opin Cell Biol. 1993 Dec;5(6):961–965. doi: 10.1016/0955-0674(93)90077-4. [DOI] [PubMed] [Google Scholar]
  22. Meerovitch K., Pelletier J., Sonenberg N. A cellular protein that binds to the 5'-noncoding region of poliovirus RNA: implications for internal translation initiation. Genes Dev. 1989 Jul;3(7):1026–1034. doi: 10.1101/gad.3.7.1026. [DOI] [PubMed] [Google Scholar]
  23. Meerovitch K., Svitkin Y. V., Lee H. S., Lejbkowicz F., Kenan D. J., Chan E. K., Agol V. I., Keene J. D., Sonenberg N. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol. 1993 Jul;67(7):3798–3807. doi: 10.1128/jvi.67.7.3798-3807.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Merrick W. C. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992 Jun;56(2):291–315. doi: 10.1128/mr.56.2.291-315.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nicholson R., Pelletier J., Le S. Y., Sonenberg N. Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. J Virol. 1991 Nov;65(11):5886–5894. doi: 10.1128/jvi.65.11.5886-5894.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oh S. K., Sarnow P. Gene regulation: translational initiation by internal ribosome binding. Curr Opin Genet Dev. 1993 Apr;3(2):295–300. doi: 10.1016/0959-437X(93)90037-P. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pantopoulos K., Johansson H. E., Hentze M. W. The role of the 5' untranslated region of eukaryotic messenger RNAs in translation and its investigation using antisense technologies. Prog Nucleic Acid Res Mol Biol. 1994;48:181–238. doi: 10.1016/S0079-6603(08)60856-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pelletier J., Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988 Jul 28;334(6180):320–325. doi: 10.1038/334320a0. [DOI] [PubMed] [Google Scholar]
  29. Pilipenko E. V., Gmyl A. P., Maslova S. V., Svitkin Y. V., Sinyakov A. N., Agol V. I. Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell. 1992 Jan 10;68(1):119–131. doi: 10.1016/0092-8674(92)90211-t. [DOI] [PubMed] [Google Scholar]
  30. Rudenko G., Chung H. M., Pham V. P., Van der Ploeg L. H. RNA polymerase I can mediate expression of CAT and neo protein-coding genes in Trypanosoma brucei. EMBO J. 1991 Nov;10(11):3387–3397. doi: 10.1002/j.1460-2075.1991.tb04903.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Scheffter S., Widmer G., Patterson J. L. Complete sequence of Leishmania RNA virus 1-4 and identification of conserved sequences. Virology. 1994 Mar;199(2):479–483. doi: 10.1006/viro.1994.1149. [DOI] [PubMed] [Google Scholar]
  32. Stuart K. D., Weeks R., Guilbride L., Myler P. J. Molecular organization of Leishmania RNA virus 1. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8596–8600. doi: 10.1073/pnas.89.18.8596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tarr P. I., Aline R. F., Jr, Smiley B. L., Scholler J., Keithly J., Stuart K. LR1: a candidate RNA virus of Leishmania. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9572–9575. doi: 10.1073/pnas.85.24.9572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wahl G. M., Meinkoth J. L., Kimmel A. R. Northern and Southern blots. Methods Enzymol. 1987;152:572–581. doi: 10.1016/0076-6879(87)52064-x. [DOI] [PubMed] [Google Scholar]
  35. Weeks R. S., Patterson J. L., Stuart K., Widmer G. Transcribing and replicating particles in a double-stranded RNA virus from Leishmania. Mol Biochem Parasitol. 1992 Jun;52(2):207–213. doi: 10.1016/0166-6851(92)90053-m. [DOI] [PubMed] [Google Scholar]
  36. Widmer G., Comeau A. M., Furlong D. B., Wirth D. F., Patterson J. L. Characterization of a RNA virus from the parasite Leishmania. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5979–5982. doi: 10.1073/pnas.86.15.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Widmer G., Dooley S. Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-parasite association. Nucleic Acids Res. 1995 Jun 25;23(12):2300–2304. doi: 10.1093/nar/23.12.2300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Widmer G., Patterson J. L. Genomic structure and RNA polymerase activity in Leishmania virus. J Virol. 1991 Aug;65(8):4211–4215. doi: 10.1128/jvi.65.8.4211-4215.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Widmer G. RNA circularization reveals terminal sequence heterogeneity in a double-stranded RNA virus. Virology. 1993 Mar;193(1):11–15. doi: 10.1006/viro.1993.1098. [DOI] [PubMed] [Google Scholar]
  40. Wood C. R., Morris G. E., Alderman E. M., Fouser L., Kaufman R. J. An internal ribosome binding site can be used to select for homologous recombinants at an immunoglobulin heavy-chain locus. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8006–8010. doi: 10.1073/pnas.88.18.8006. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES