Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Sep;15(9):4947–4955. doi: 10.1128/mcb.15.9.4947

Individual mouse alpha-fetoprotein enhancer elements exhibit different patterns of tissue-specific and hepatic position-dependent activities.

T M Ramesh 1, A W Ellis 1, B T Spear 1
PMCID: PMC230741  PMID: 7544436

Abstract

Transcription of the mouse alpha-fetoprotein (AFP) gene, which is expressed at high levels in the visceral endoderm of the yolk sac and fetal liver and at low levels in the fetal gut, is regulated by three distinct upstream enhancer regions. To investigate the activities of these regions, each enhancer was individually linked to a heterologous human beta-globin promoter fused to the mouse class I H-2Dd structural gene. When tested in transgenic mice, the beta-globin promoter alone has minimal activity. We find that all three enhancers activate the beta-globin promoter in an AFP-like pattern; i.e., activity is detected in the yolk sac, fetal liver, and fetal gut. The enhancers remain active in the livers and guts of adult mice, consistent with previous studies showing that postnatal AFP repression is due not to the loss of enhancer activity but to a dominant repressor region. Enhancer III also functions in the brain. In addition, these studies reveal that the three enhancers exhibit different position-dependent activities in the adult liver. Enhancers I and II are most active in hepatocytes surrounding the central vein, with a gradual decrease in activity along the hepatic plates toward the portal triad. Enhancer III is active exclusively in hepatocytes surrounding the central vein. These data represent the first examples of individual control elements exhibiting positionally regulated activity in adult liver.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen N. D., Cran D. G., Barton S. C., Hettle S., Reik W., Surani M. A. Transgenes as probes for active chromosomal domains in mouse development. Nature. 1988 Jun 30;333(6176):852–855. doi: 10.1038/333852a0. [DOI] [PubMed] [Google Scholar]
  2. Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
  3. Behringer R. R., Hammer R. E., Brinster R. L., Palmiter R. D., Townes T. M. Two 3' sequences direct adult erythroid-specific expression of human beta-globin genes in transgenic mice. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7056–7060. doi: 10.1073/pnas.84.20.7056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belayew A., Tilghman S. M. Genetic analysis of alpha-fetoprotein synthesis in mice. Mol Cell Biol. 1982 Nov;2(11):1427–1435. doi: 10.1128/mcb.2.11.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bois-Joyeux B., Danan J. L. Members of the CAAT/enhancer-binding protein, hepatocyte nuclear factor-1 and nuclear factor-1 families can differentially modulate the activities of the rat alpha-fetoprotein promoter and enhancer. Biochem J. 1994 Jul 1;301(Pt 1):49–55. doi: 10.1042/bj3010049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Camper S. A., Tilghman S. M. Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev. 1989 Apr;3(4):537–546. doi: 10.1101/gad.3.4.537. [DOI] [PubMed] [Google Scholar]
  7. Caterina J. J., Ryan T. M., Pawlik K. M., Palmiter R. D., Brinster R. L., Behringer R. R., Townes T. M. Human beta-globin locus control region: analysis of the 5' DNase I hypersensitive site HS 2 in transgenic mice. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1626–1630. doi: 10.1073/pnas.88.5.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Simone V., Cortese R. Transcription factors and liver-specific genes. Biochim Biophys Acta. 1992 Sep 24;1132(2):119–126. doi: 10.1016/0167-4781(92)90001-g. [DOI] [PubMed] [Google Scholar]
  9. De Simone V., Cortese R. Transcriptional regulation of liver-specific gene expression. Curr Opin Cell Biol. 1991 Dec;3(6):960–965. doi: 10.1016/0955-0674(91)90114-e. [DOI] [PubMed] [Google Scholar]
  10. Emerson J. A., Vacher J., Cirillo L. A., Tilghman S. M., Tyner A. L. The zonal expression of alpha-fetoprotein transgenes in the livers of adult mice. Dev Dyn. 1992 Sep;195(1):55–66. doi: 10.1002/aja.1001950106. [DOI] [PubMed] [Google Scholar]
  11. Feuerman M. H., Godbout R., Ingram R. S., Tilghman S. M. Tissue-specific transcription of the mouse alpha-fetoprotein gene promoter is dependent on HNF-1. Mol Cell Biol. 1989 Oct;9(10):4204–4212. doi: 10.1128/mcb.9.10.4204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Godbout R., Ingram R. S., Tilghman S. M. Fine-structure mapping of the three mouse alpha-fetoprotein gene enhancers. Mol Cell Biol. 1988 Mar;8(3):1169–1178. doi: 10.1128/mcb.8.3.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Godbout R., Ingram R., Tilghman S. M. Multiple regulatory elements in the intergenic region between the alpha-fetoprotein and albumin genes. Mol Cell Biol. 1986 Feb;6(2):477–487. doi: 10.1128/mcb.6.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Godbout R., Tilghman S. M. Configuration of the alpha-fetoprotein regulatory domain during development. Genes Dev. 1988 Aug;2(8):949–956. doi: 10.1101/gad.2.8.949. [DOI] [PubMed] [Google Scholar]
  15. Grisham J. W. Migration of hepatocytes along hepatic plates and stem cell-fed hepatocyte lineages. Am J Pathol. 1994 May;144(5):849–854. [PMC free article] [PubMed] [Google Scholar]
  16. Groupp E. R., Crawford N., Locker J. Characterization of the distal alpha-fetoprotein enhancer, a strong, long distance, liver-specific activator. J Biol Chem. 1994 Sep 2;269(35):22178–22187. [PubMed] [Google Scholar]
  17. Gumucio J. J. Hepatocyte heterogeneity: the coming of age from the description of a biological curiosity to a partial understanding of its physiological meaning and regulation. Hepatology. 1989 Jan;9(1):154–160. doi: 10.1002/hep.1840090124. [DOI] [PubMed] [Google Scholar]
  18. Hammer R. E., Krumlauf R., Camper S. A., Brinster R. L., Tilghman S. M. Diversity of alpha-fetoprotein gene expression in mice is generated by a combination of separate enhancer elements. Science. 1987 Jan 2;235(4784):53–58. doi: 10.1126/science.2432657. [DOI] [PubMed] [Google Scholar]
  19. Kadesch T., Zervos P., Ruezinsky D. Functional analysis of the murine IgH enhancer: evidence for negative control of cell-type specificity. Nucleic Acids Res. 1986 Oct 24;14(20):8209–8221. doi: 10.1093/nar/14.20.8209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Katz N. R. Metabolic heterogeneity of hepatocytes across the liver acinus. J Nutr. 1992 Mar;122(3 Suppl):843–849. doi: 10.1093/jn/122.suppl_3.843. [DOI] [PubMed] [Google Scholar]
  21. Kuo C. F., Paulson K. E., Darnell J. E., Jr Positional and developmental regulation of glutamine synthetase expression in mouse liver. Mol Cell Biol. 1988 Nov;8(11):4966–4971. doi: 10.1128/mcb.8.11.4966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuo C. F., Xanthopoulos K. G., Darnell J. E., Jr Fetal and adult localization of C/EBP: evidence for combinatorial action of transcription factors in cell-specific gene expression. Development. 1990 Jun;109(2):473–481. doi: 10.1242/dev.109.2.473. [DOI] [PubMed] [Google Scholar]
  23. Mendel D. B., Hansen L. P., Graves M. K., Conley P. B., Crabtree G. R. HNF-1 alpha and HNF-1 beta (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Genes Dev. 1991 Jun;5(6):1042–1056. doi: 10.1101/gad.5.6.1042. [DOI] [PubMed] [Google Scholar]
  24. Ploegh H. L., Orr H. T., Strominger J. L. Major histocompatibility antigens: the human (HLA-A, -B, -C) and murine (H-2K, H-2D) class I molecules. Cell. 1981 May;24(2):287–299. doi: 10.1016/0092-8674(81)90318-4. [DOI] [PubMed] [Google Scholar]
  25. Sigal S. H., Brill S., Fiorino A. S., Reid L. M. The liver as a stem cell and lineage system. Am J Physiol. 1992 Aug;263(2 Pt 1):G139–G148. doi: 10.1152/ajpgi.1992.263.2.G139. [DOI] [PubMed] [Google Scholar]
  26. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  27. Spear B. T., Ellis A. W. Endogenous and transfected mouse alpha-fetoprotein genes in undifferentiated F9 cells are activated in transient heterokaryons. Somat Cell Mol Genet. 1995 Jan;21(1):19–31. doi: 10.1007/BF02255819. [DOI] [PubMed] [Google Scholar]
  28. Spear B. T. Mouse alpha-fetoprotein gene 5' regulatory elements are required for postnatal regulation by raf and Rif. Mol Cell Biol. 1994 Oct;14(10):6497–6505. doi: 10.1128/mcb.14.10.6497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spear B. T., Tilghman S. M. Role of alpha-fetoprotein regulatory elements in transcriptional activation in transient heterokaryons. Mol Cell Biol. 1990 Oct;10(10):5047–5054. doi: 10.1128/mcb.10.10.5047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tilghman S. M. The structure and regulation of the alpha-fetoprotein and albumin genes. Oxf Surv Eukaryot Genes. 1985;2:160–206. [PubMed] [Google Scholar]
  31. Tyner A. L., Godbout R., Compton R. S., Tilghman S. M. The ontogeny of alpha-fetoprotein gene expression in the mouse gastrointestinal tract. J Cell Biol. 1990 Apr;110(4):915–927. doi: 10.1083/jcb.110.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vacher J., Tilghman S. M. Dominant negative regulation of the mouse alpha-fetoprotein gene in adult liver. Science. 1990 Dec 21;250(4988):1732–1735. doi: 10.1126/science.1702902. [DOI] [PubMed] [Google Scholar]
  33. Wen P., Crawford N., Locker J. A promoter-linked coupling region required for stimulation of alpha-fetoprotein transcription by distant enhancers. Nucleic Acids Res. 1993 Apr 25;21(8):1911–1918. doi: 10.1093/nar/21.8.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wen P., Groupp E. R., Buzard G., Crawford N., Locker J. Enhancer, repressor, and promoter specificities combine to regulate the rat alpha-fetoprotein gene. DNA Cell Biol. 1991 Sep;10(7):525–536. doi: 10.1089/dna.1991.10.525. [DOI] [PubMed] [Google Scholar]
  35. Widen S. G., Papaconstantinou J. Liver-specific expression of the mouse alpha-fetoprotein gene is mediated by cis-acting DNA elements. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8196–8200. doi: 10.1073/pnas.83.21.8196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Xanthopoulos K. G., Prezioso V. R., Chen W. S., Sladek F. M., Cortese R., Darnell J. E., Jr The different tissue transcription patterns of genes for HNF-1, C/EBP, HNF-3, and HNF-4, protein factors that govern liver-specific transcription. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3807–3811. doi: 10.1073/pnas.88.9.3807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang D. E., Hoyt P. R., Papaconstantinou J. Localization of DNA protein-binding sites in the proximal and distal promoter regions of the mouse alpha-fetoprotein gene. J Biol Chem. 1990 Feb 25;265(6):3382–3391. [PubMed] [Google Scholar]
  38. Zhang D. E., Rabek J. P., Hsieh C. C., Torres-Ramos C., Papaconstantinou J. Functional analysis of the mouse alpha-fetoprotein enhancers and their subfragments in primary mouse hepatocyte cultures. J Biol Chem. 1992 May 25;267(15):10676–10682. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES