Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Sep;15(9):5100–5112. doi: 10.1128/mcb.15.9.5100

A novel retinoid X receptor-independent thyroid hormone response element is present in the human type 1 deiodinase gene.

N Toyoda 1, A M Zavacki 1, A L Maia 1, J W Harney 1, P R Larsen 1
PMCID: PMC230757  PMID: 7651427

Abstract

We identified two thyroid hormone response elements (TREs) in the 2.5-kb, 5'-flanking region of the human gene encoding type 1 iodothyronine deiodinase (hdio1), an enzyme which catalyses the activation of thyroxine to 3,5,3'-triiodothyronine (T3). Both TREs contribute equally to T3 induction of the homologous promoter in transient expression assays. The proximal TRE (TRE1), which is located at bp -100, has an unusual structure, a direct repeat of the octamer YYRGGTCA hexamer that is spaced by 10 bp. The pyrimidines in the -2 position relative to the core hexamer are both essential to function. In vitro binding studies of TRE1 showed no heterodimer formation with retinoid X receptor (RXR) beta or JEG nuclear extracts (containing RXR alpha) and bacterially expressed chicken T3 receptor alpha 1 (TR alpha) can occupy both half-sites although the 3' half-site is dominant. T3 causes dissociation of TR alpha from the 5' half-site but increases binding to the 3' half-site. Binding of a second TR to TRE1 is minimally cooperative; however, no cooperativity was noted for a functional mutant in which the half-sites are separated by 15 bp, implying that TRs bind as independent monomers. Nonetheless, T3 still causes TR dissociation from the DR+15, indicating that dissociation occurs independently of TR-TR contact and that rebinding of a T3-TR complex to the 3' half-site occurs because of its slightly higher affinity. A distal TRE (TRE2) is found at bp -700 and is a direct repeat of a PuGGTCA hexamer spaced by 4 bp. It has typical TR homodimer and TR-RXR heterodimer binding properties. The TRE1 of hdio1 is the first example of a naturally occurring TRE consisting of two relatively independent octamer sequences which do not require the RXR family of proteins for function.

Full Text

The Full Text of this article is available as a PDF (763.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams G. M., Larsen P. R. Triiodothyronine and thyroxine in the serum and thyroid glands of iodine-deficient rats. J Clin Invest. 1973 Oct;52(10):2522–2531. doi: 10.1172/JCI107443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson M. L., Nordström K., Demczuk S., Harbers M., Vennström B. Thyroid hormone alters the DNA binding properties of chicken thyroid hormone receptors alpha and beta. Nucleic Acids Res. 1992 Sep 25;20(18):4803–4810. doi: 10.1093/nar/20.18.4803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aruffo A., Seed B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8573–8577. doi: 10.1073/pnas.84.23.8573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berrodin T. J., Marks M. S., Ozato K., Linney E., Lazar M. A. Heterodimerization among thyroid hormone receptor, retinoic acid receptor, retinoid X receptor, chicken ovalbumin upstream promoter transcription factor, and an endogenous liver protein. Mol Endocrinol. 1992 Sep;6(9):1468–1478. doi: 10.1210/mend.6.9.1331778. [DOI] [PubMed] [Google Scholar]
  5. Berry M. J., Banu L., Larsen P. R. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature. 1991 Jan 31;349(6308):438–440. doi: 10.1038/349438a0. [DOI] [PubMed] [Google Scholar]
  6. Berry M. J., Kates A. L., Larsen P. R. Thyroid hormone regulates type I deiodinase messenger RNA in rat liver. Mol Endocrinol. 1990 May;4(5):743–748. doi: 10.1210/mend-4-5-743. [DOI] [PubMed] [Google Scholar]
  7. Berry M. J., Larsen P. R. The role of selenium in thyroid hormone action. Endocr Rev. 1992 May;13(2):207–219. doi: 10.1210/edrv-13-2-207. [DOI] [PubMed] [Google Scholar]
  8. Brent G. A., Dunn M. K., Harney J. W., Gulick T., Larsen P. R., Moore D. D. Thyroid hormone aporeceptor represses T3-inducible promoters and blocks activity of the retinoic acid receptor. New Biol. 1989 Dec;1(3):329–336. [PubMed] [Google Scholar]
  9. Brent G. A., Larsen P. R., Harney J. W., Koenig R. J., Moore D. D. Functional characterization of the rat growth hormone promoter elements required for induction by thyroid hormone with and without a co-transfected beta type thyroid hormone receptor. J Biol Chem. 1989 Jan 5;264(1):178–182. [PubMed] [Google Scholar]
  10. Brent G. A., Williams G. R., Harney J. W., Forman B. M., Samuels H. H., Moore D. D., Larsen P. R. Capacity for cooperative binding of thyroid hormone (T3) receptor dimers defines wild type T3 response elements. Mol Endocrinol. 1992 Apr;6(4):502–514. doi: 10.1210/mend.6.4.1584220. [DOI] [PubMed] [Google Scholar]
  11. Brent G. A., Williams G. R., Harney J. W., Forman B. M., Samuels H. H., Moore D. D., Larsen P. R. Effects of varying the position of thyroid hormone response elements within the rat growth hormone promoter: implications for positive and negative regulation by 3,5,3'-triiodothyronine. Mol Endocrinol. 1991 Apr;5(4):542–548. doi: 10.1210/mend-5-4-542. [DOI] [PubMed] [Google Scholar]
  12. Bugge T. H., Pohl J., Lonnoy O., Stunnenberg H. G. RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J. 1992 Apr;11(4):1409–1418. doi: 10.1002/j.1460-2075.1992.tb05186.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Carlberg C. RXR-independent action of the receptors for thyroid hormone, retinoid acid and vitamin D on inverted palindromes. Biochem Biophys Res Commun. 1993 Sep 30;195(3):1345–1353. doi: 10.1006/bbrc.1993.2191. [DOI] [PubMed] [Google Scholar]
  14. Contempre B., Dumont J. E., Ngo B., Thilly C. H., Diplock A. T., Vanderpas J. Effect of selenium supplementation in hypothyroid subjects of an iodine and selenium deficient area: the possible danger of indiscriminate supplementation of iodine-deficient subjects with selenium. J Clin Endocrinol Metab. 1991 Jul;73(1):213–215. doi: 10.1210/jcem-73-1-213. [DOI] [PubMed] [Google Scholar]
  15. Damm K., Thompson C. C., Evans R. M. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature. 1989 Jun 22;339(6226):593–597. doi: 10.1038/339593a0. [DOI] [PubMed] [Google Scholar]
  16. Desai-Yajnik V., Samuels H. H. The NF-kappa B and Sp1 motifs of the human immunodeficiency virus type 1 long terminal repeat function as novel thyroid hormone response elements. Mol Cell Biol. 1993 Aug;13(8):5057–5069. doi: 10.1128/mcb.13.8.5057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Forman B. M., Casanova J., Raaka B. M., Ghysdael J., Samuels H. H. Half-site spacing and orientation determines whether thyroid hormone and retinoic acid receptors and related factors bind to DNA response elements as monomers, homodimers, or heterodimers. Mol Endocrinol. 1992 Mar;6(3):429–442. doi: 10.1210/mend.6.3.1316541. [DOI] [PubMed] [Google Scholar]
  18. Forman B. M., Samuels H. H. Interactions among a subfamily of nuclear hormone receptors: the regulatory zipper model. Mol Endocrinol. 1990 Sep;4(9):1293–1301. doi: 10.1210/mend-4-9-1293. [DOI] [PubMed] [Google Scholar]
  19. Glass C. K. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr Rev. 1994 Jun;15(3):391–407. doi: 10.1210/edrv-15-3-391. [DOI] [PubMed] [Google Scholar]
  20. Graupner G., Wills K. N., Tzukerman M., Zhang X. K., Pfahl M. Dual regulatory role for thyroid-hormone receptors allows control of retinoic-acid receptor activity. Nature. 1989 Aug 24;340(6235):653–656. doi: 10.1038/340653a0. [DOI] [PubMed] [Google Scholar]
  21. Hermann T., Hoffmann B., Zhang X. K., Tran P., Pfahl M. Heterodimeric receptor complexes determine 3,5,3'-triiodothyronine and retinoid signaling specificities. Mol Endocrinol. 1992 Jul;6(7):1153–1162. doi: 10.1210/mend.6.7.1324421. [DOI] [PubMed] [Google Scholar]
  22. Hsu J. H., Zavacki A. M., Harney J. W., Brent G. A. Retinoid-X receptor (RXR) differentially augments thyroid hormone response in cell lines as a function of the response element and endogenous RXR content. Endocrinology. 1995 Feb;136(2):421–430. doi: 10.1210/endo.136.2.7835272. [DOI] [PubMed] [Google Scholar]
  23. Ikeda M., Rhee M., Chin W. W. Thyroid hormone receptor monomer, homodimer, and heterodimer (with retinoid-X receptor) contact different nucleotide sequences in thyroid hormone response elements. Endocrinology. 1994 Oct;135(4):1628–1638. doi: 10.1210/endo.135.4.7925126. [DOI] [PubMed] [Google Scholar]
  24. Javahery R., Khachi A., Lo K., Zenzie-Gregory B., Smale S. T. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol Cell Biol. 1994 Jan;14(1):116–127. doi: 10.1128/mcb.14.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Katz R. W., Koenig R. J. Nonbiased identification of DNA sequences that bind thyroid hormone receptor alpha 1 with high affinity. J Biol Chem. 1993 Sep 15;268(26):19392–19397. [PubMed] [Google Scholar]
  26. Katz R. W., Koenig R. J. Specificity and mechanism of thyroid hormone induction from an octamer response element. J Biol Chem. 1994 Jul 22;269(29):18915–18920. [PubMed] [Google Scholar]
  27. Kim H. S., Crone D. E., Sprung C. N., Tillman J. B., Force W. R., Crew M. D., Mote P. L., Spindler S. R. Positive and negative thyroid hormone response elements are composed of strong and weak half-sites 10 nucleotides in length. Mol Endocrinol. 1992 Sep;6(9):1489–1501. doi: 10.1210/mend.6.9.1435790. [DOI] [PubMed] [Google Scholar]
  28. Kliewer S. A., Umesono K., Mangelsdorf D. J., Evans R. M. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature. 1992 Jan 30;355(6359):446–449. doi: 10.1038/355446a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
  30. Koenig R. J., Brent G. A., Warne R. L., Larsen P. R., Moore D. D. Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5670–5674. doi: 10.1073/pnas.84.16.5670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Koenig R. J., Warne R. L., Brent G. A., Harney J. W., Larsen P. R., Moore D. D. Isolation of a cDNA clone encoding a biologically active thyroid hormone receptor. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5031–5035. doi: 10.1073/pnas.85.14.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Larsen P. R., Frumess R. D. Comparison of the biological effects of thyroxine and triiodothyronine in the rat. Endocrinology. 1977 Apr;100(4):980–988. doi: 10.1210/endo-100-4-980. [DOI] [PubMed] [Google Scholar]
  33. Larsen P. R., Harney J. W., Moore D. D. Sequences required for cell-type specific thyroid hormone regulation of rat growth hormone promoter activity. J Biol Chem. 1986 Nov 5;261(31):14373–14376. [PubMed] [Google Scholar]
  34. Lazar M. A., Berrodin T. J., Harding H. P. Differential DNA binding by monomeric, homodimeric, and potentially heteromeric forms of the thyroid hormone receptor. Mol Cell Biol. 1991 Oct;11(10):5005–5015. doi: 10.1128/mcb.11.10.5005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lee J. W., Moore D. D., Heyman R. A. A chimeric thyroid hormone receptor constitutively bound to DNA requires retinoid X receptor for hormone-dependent transcriptional activation in yeast. Mol Endocrinol. 1994 Sep;8(9):1245–1252. doi: 10.1210/mend.8.9.7838157. [DOI] [PubMed] [Google Scholar]
  36. Leid M., Kastner P., Lyons R., Nakshatri H., Saunders M., Zacharewski T., Chen J. Y., Staub A., Garnier J. M., Mader S. Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell. 1992 Jan 24;68(2):377–395. doi: 10.1016/0092-8674(92)90478-u. [DOI] [PubMed] [Google Scholar]
  37. Maia A. L., Harney J. W., Larsen P. R. Pituitary cells respond to thyroid hormone by discrete, gene-specific pathways. Endocrinology. 1995 Apr;136(4):1488–1494. doi: 10.1210/endo.136.4.7534701. [DOI] [PubMed] [Google Scholar]
  38. Mandel S. J., Berry M. J., Kieffer J. D., Harney J. W., Warne R. L., Larsen P. R. Cloning and in vitro expression of the human selenoprotein, type I iodothyronine deiodinase. J Clin Endocrinol Metab. 1992 Oct;75(4):1133–1139. doi: 10.1210/jcem.75.4.1400883. [DOI] [PubMed] [Google Scholar]
  39. Mangelsdorf D. J., Ong E. S., Dyck J. A., Evans R. M. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature. 1990 May 17;345(6272):224–229. doi: 10.1038/345224a0. [DOI] [PubMed] [Google Scholar]
  40. Mangelsdorf D. J., Umesono K., Kliewer S. A., Borgmeyer U., Ong E. S., Evans R. M. A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell. 1991 Aug 9;66(3):555–561. doi: 10.1016/0092-8674(81)90018-0. [DOI] [PubMed] [Google Scholar]
  41. Marks M. S., Hallenbeck P. L., Nagata T., Segars J. H., Appella E., Nikodem V. M., Ozato K. H-2RIIBP (RXR beta) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J. 1992 Apr;11(4):1419–1435. doi: 10.1002/j.1460-2075.1992.tb05187.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Menjo M., Murata Y., Fujii T., Nimura Y., Seo H. Effects of thyroid and glucocorticoid hormones on the level of messenger ribonucleic acid for iodothyronine type I 5'-deiodinase in rat primary hepatocyte cultures grown as spheroids. Endocrinology. 1993 Dec;133(6):2984–2990. doi: 10.1210/endo.133.6.8243326. [DOI] [PubMed] [Google Scholar]
  43. Moreno M., Berry M. J., Horst C., Thoma R., Goglia F., Harney J. W., Larsen P. R., Visser T. J. Activation and inactivation of thyroid hormone by type I iodothyronine deiodinase. FEBS Lett. 1994 May 16;344(2-3):143–146. doi: 10.1016/0014-5793(94)00365-3. [DOI] [PubMed] [Google Scholar]
  44. När A. M., Boutin J. M., Lipkin S. M., Yu V. C., Holloway J. M., Glass C. K., Rosenfeld M. G. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell. 1991 Jun 28;65(7):1267–1279. doi: 10.1016/0092-8674(91)90021-p. [DOI] [PubMed] [Google Scholar]
  45. O'Mara B. A., Dittrich W., Lauterio T. J., St Germain D. L. Pretranslational regulation of type I 5'-deiodinase by thyroid hormones and in fasted and diabetic rats. Endocrinology. 1993 Oct;133(4):1715–1723. doi: 10.1210/endo.133.4.8404614. [DOI] [PubMed] [Google Scholar]
  46. Okamura K., Taurog A., Krulich L. Hypothyroidism in severely iodine-deficient rats. Endocrinology. 1981 Aug;109(2):464–468. doi: 10.1210/endo-109-2-464. [DOI] [PubMed] [Google Scholar]
  47. Oppenheimer J. H., Schwartz H. L., Surks M. I. Propylthiouracil inhibits the conversion of L-thyroxine to L-triiodothyronine. An explanation of the antithyroxine effect of propylthiouracil and evidence supporting the concept that triiodothyronine is the active thyroid hormone. J Clin Invest. 1972 Sep;51(9):2493–2497. doi: 10.1172/JCI107063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Park H. Y., Davidson D., Raaka B. M., Samuels H. H. The herpes simplex virus thymidine kinase gene promoter contains a novel thyroid hormone response element. Mol Endocrinol. 1993 Mar;7(3):319–330. doi: 10.1210/mend.7.3.8387156. [DOI] [PubMed] [Google Scholar]
  49. Pazos-Moura C. C., Moura E. G., Dorris M. L., Rehnmark S., Melendez L., Silva J. E., Taurog A. Effect of iodine deficiency and cold exposure on thyroxine 5'-deiodinase activity in various rat tissues. Am J Physiol. 1991 Feb;260(2 Pt 1):E175–E182. doi: 10.1152/ajpendo.1991.260.2.E175. [DOI] [PubMed] [Google Scholar]
  50. Prost E., Koenig R. J., Moore D. D., Larsen P. R., Whalen R. G. Multiple sequences encoding potential thyroid hormone receptors isolated from mouse skeletal muscle cDNA libraries. Nucleic Acids Res. 1988 Jul 11;16(13):6248–6248. doi: 10.1093/nar/16.13.6248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Prost E., Moore D. D. CAT vectors for analysis of eukaryotic promoters and enhancers. Gene. 1986;45(1):107–111. doi: 10.1016/0378-1119(86)90138-1. [DOI] [PubMed] [Google Scholar]
  52. Ribeiro R. C., Kushner P. J., Apriletti J. W., West B. L., Baxter J. D. Thyroid hormone alters in vitro DNA binding of monomers and dimers of thyroid hormone receptors. Mol Endocrinol. 1992 Jul;6(7):1142–1152. doi: 10.1210/mend.6.7.1508227. [DOI] [PubMed] [Google Scholar]
  53. Riesco G., Taurog A., Larsen R., Krulich L. Acute and chronic responses to iodine deficiency in rats. Endocrinology. 1977 Feb;100(2):303–313. doi: 10.1210/endo-100-2-303. [DOI] [PubMed] [Google Scholar]
  54. Santos A., Perez-Castillo A., Wong N. C., Oppenheimer J. H. Labile proteins are necessary for T3 induction of growth hormone mRNA in normal rat pituitary and rat pituitary tumor cells. J Biol Chem. 1987 Dec 15;262(35):16880–16884. [PubMed] [Google Scholar]
  55. Schräder M., Becker-André M., Carlberg C. Thyroid hormone receptor functions as monomeric ligand-induced transcription factor on octameric half-sites. Consequences also for dimerization. J Biol Chem. 1994 Mar 4;269(9):6444–6449. [PubMed] [Google Scholar]
  56. Schueler P. A., Schwartz H. L., Strait K. A., Mariash C. N., Oppenheimer J. H. Binding of 3,5,3'-triiodothyronine (T3) and its analogs to the in vitro translational products of c-erbA protooncogenes: differences in the affinity of the alpha- and beta-forms for the acetic acid analog and failure of the human testis and kidney alpha-2 products to bind T3. Mol Endocrinol. 1990 Feb;4(2):227–234. doi: 10.1210/mend-4-2-227. [DOI] [PubMed] [Google Scholar]
  57. Seed B., Sheen J. Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 1988 Jul 30;67(2):271–277. doi: 10.1016/0378-1119(88)90403-9. [DOI] [PubMed] [Google Scholar]
  58. Seelig S., Jump D. B., Towle H. C., Liaw C., Mariash C. N., Schwartz H. L., Oppenheimer J. H. Paradoxical effects of cycloheximide on the ultra-rapid induction of two hepatic mRNA sequences by triiodothyronine (T3). Endocrinology. 1982 Feb;110(2):671–673. doi: 10.1210/endo-110-2-671. [DOI] [PubMed] [Google Scholar]
  59. Selden R. F., Howie K. B., Rowe M. E., Goodman H. M., Moore D. D. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol Cell Biol. 1986 Sep;6(9):3173–3179. doi: 10.1128/mcb.6.9.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sugawara A., Yen P. M., Darling D. S., Chin W. W. Characterization and tissue expression of multiple triiodothyronine receptor-auxiliary proteins and their relationship to the retinoid X-receptors. Endocrinology. 1993 Sep;133(3):965–971. doi: 10.1210/endo.133.3.8396023. [DOI] [PubMed] [Google Scholar]
  61. Toney J. H., Wu L., Summerfield A. E., Sanyal G., Forman B. M., Zhu J., Samuels H. H. Conformational changes in chicken thyroid hormone receptor alpha 1 induced by binding to ligand or to DNA. Biochemistry. 1993 Jan 12;32(1):2–6. doi: 10.1021/bi00052a001. [DOI] [PubMed] [Google Scholar]
  62. Toyoda N., Nishikawa M., Mori Y., Gondou A., Ogawa Y., Yonemoto T., Yoshimura M., Masaki H., Inada M. Thyrotropin and triiodothyronine regulate iodothyronine 5'-deiodinase messenger ribonucleic acid levels in FRTL-5 rat thyroid cells. Endocrinology. 1992 Jul;131(1):389–394. doi: 10.1210/endo.131.1.1319323. [DOI] [PubMed] [Google Scholar]
  63. Tsai S. Y., Tsai M. J., O'Malley B. W. Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements. Cell. 1989 May 5;57(3):443–448. doi: 10.1016/0092-8674(89)90919-7. [DOI] [PubMed] [Google Scholar]
  64. Umesono K., Murakami K. K., Thompson C. C., Evans R. M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991 Jun 28;65(7):1255–1266. doi: 10.1016/0092-8674(91)90020-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Wahlström G. M., Sjöberg M., Andersson M., Nordström K., Vennström B. Binding characteristics of the thyroid hormone receptor homo- and heterodimers to consensus AGGTCA repeat motifs. Mol Endocrinol. 1992 Jul;6(7):1013–1022. doi: 10.1210/mend.6.7.1324417. [DOI] [PubMed] [Google Scholar]
  66. Williams G. R., Harney J. W., Forman B. M., Samuels H. H., Brent G. A. Oligomeric binding of T3 receptor is required for maximal T3 response. J Biol Chem. 1991 Oct 15;266(29):19636–19644. [PubMed] [Google Scholar]
  67. Yen P. M., Brubaker J. H., Apriletti J. W., Baxter J. D., Chin W. W. Roles of 3,5,3'-triiodothyronine and deoxyribonucleic acid binding on thyroid hormone receptor complex formation. Endocrinology. 1994 Mar;134(3):1075–1081. doi: 10.1210/endo.134.3.8119145. [DOI] [PubMed] [Google Scholar]
  68. Yen P. M., Darling D. S., Carter R. L., Forgione M., Umeda P. K., Chin W. W. Triiodothyronine (T3) decreases binding to DNA by T3-receptor homodimers but not receptor-auxiliary protein heterodimers. J Biol Chem. 1992 Feb 25;267(6):3565–3568. [PubMed] [Google Scholar]
  69. Yen P. M., Sugawara A., Chin W. W. Triiodothyronine (T3) differentially affects T3-receptor/retinoic acid receptor and T3-receptor/retinoid X receptor heterodimer binding to DNA. J Biol Chem. 1992 Nov 15;267(32):23248–23252. [PubMed] [Google Scholar]
  70. Yu V. C., Delsert C., Andersen B., Holloway J. M., Devary O. V., När A. M., Kim S. Y., Boutin J. M., Glass C. K., Rosenfeld M. G. RXR beta: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell. 1991 Dec 20;67(6):1251–1266. doi: 10.1016/0092-8674(91)90301-e. [DOI] [PubMed] [Google Scholar]
  71. Zhang X. K., Hoffmann B., Tran P. B., Graupner G., Pfahl M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature. 1992 Jan 30;355(6359):441–446. doi: 10.1038/355441a0. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES