Abstract
Mammalian cells regulate tubulin mRNA abundance by a posttranscriptional mechanism dependent on the concentration of tubulin monomer. Treatment of mammalian cells with microtubule-depolymerizing drugs and microtubule-polymerizing drugs causes decreases and increases in tubulin mRNA, respectively (D. W. Cleveland, Curr. Opin. Cell Biol. 1:10-14, 1989). In striking contrast to the case with mammalian cells, perturbation of microtubules in Tetrahymena thermophila by microtubule-depolymerizing or -polymerizing drugs increases the level of the single alpha-tubulin gene message by increasing transcription (L. A. Stargell, D. P. Heruth, J. Gaertig, and M. A. Gorovsky, Mol. Cell. Biol. 12:1443-1450, 1992). In this report we show that antimicrotubule drugs preferentially induce the expression of one of two beta-tubulin genes (BTU1) in T. thermophila. In contrast, deciliation induces expression of both beta-tubulin genes. Tubulin gene expression was examined in a mutant strain created by transformation with an in vitro-mutagenized beta-tubulin gene that conferred resistance to microtubule-depolymerizing drugs and sensitivity to the polymerizing drug taxol and in a strain containing a nitrosoguanidine-induced mutation in the single alpha-tubulin gene that conferred the same pattern of drug sensitivities. In both cases the levels of tubulin mRNA expression from the drug-inducible BTU1 gene in the mutant cells paralleled the altered growth sensitivities to microtubule drugs. These studies demonstrate that T. thermophila has distinct, gene-specific mechanisms for modulating tubulin gene expression depending on whether ciliary or cytoplasmic microtubules are involved. They also show that the cytoplasmic microtubule cytoskeleton itself participates in a signal transduction pathway that regulates specific tubulin gene transcription in T. thermophila.
Full Text
The Full Text of this article is available as a PDF (407.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachurski C. J., Theodorakis N. G., Coulson R. M., Cleveland D. W. An amino-terminal tetrapeptide specifies cotranslational degradation of beta-tubulin but not alpha-tubulin mRNAs. Mol Cell Biol. 1994 Jun;14(6):4076–4086. doi: 10.1128/mcb.14.6.4076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bannon G. A., Bowen J. K., Yao M. C., Gorovsky M. A. Tetrahymena H4 genes: structure, evolution and organization in macro- and micronuclei. Nucleic Acids Res. 1984 Feb 24;12(4):1961–1975. doi: 10.1093/nar/12.4.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barahona I., Soares H., Cyrne L., Penque D., Denoulet P., Rodrigues-Pousada C. Sequence of one alpha- and two beta-tubulin genes of Tetrahymena pyriformis. Structural and functional relationships with other eukaryotic tubulin genes. J Mol Biol. 1988 Aug 5;202(3):365–382. doi: 10.1016/0022-2836(88)90271-9. [DOI] [PubMed] [Google Scholar]
- Bassell G. J. High resolution distribution of mRNA within the cytoskeleton. J Cell Biochem. 1993 Jun;52(2):127–133. doi: 10.1002/jcb.240520203. [DOI] [PubMed] [Google Scholar]
- Ben-Ze'ev A., Farmer S. R., Penman S. Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell. 1979 Jun;17(2):319–325. doi: 10.1016/0092-8674(79)90157-0. [DOI] [PubMed] [Google Scholar]
- Bernstein M., Beech P. L., Katz S. G., Rosenbaum J. L. A new kinesin-like protein (Klp1) localized to a single microtubule of the Chlamydomonas flagellum. J Cell Biol. 1994 Jun;125(6):1313–1326. doi: 10.1083/jcb.125.6.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calzone F. J., Gorovsky M. A. Cilia regeneration in Tetrahymena. A simple reproducible method for producing large numbers of regenerating cells. Exp Cell Res. 1982 Aug;140(2):471–476. doi: 10.1016/0014-4827(82)90144-6. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Cleveland D. W. Autoregulated control of tubulin synthesis in animal cells. Curr Opin Cell Biol. 1989 Feb;1(1):10–14. doi: 10.1016/s0955-0674(89)80030-4. [DOI] [PubMed] [Google Scholar]
- Cleveland D. W., Lopata M. A., Sherline P., Kirschner M. W. Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell. 1981 Aug;25(2):537–546. doi: 10.1016/0092-8674(81)90072-6. [DOI] [PubMed] [Google Scholar]
- Cleveland D. W., Pittenger M. F., Feramisco J. R. Elevation of tubulin levels by microinjection suppresses new tubulin synthesis. Nature. 1983 Oct 20;305(5936):738–740. doi: 10.1038/305738a0. [DOI] [PubMed] [Google Scholar]
- Cupples C. G., Pearlman R. E. Isolation and characterization of the actin gene from Tetrahymena thermophila. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5160–5164. doi: 10.1073/pnas.83.14.5160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Derry W. B., Wilson L., Jordan M. A. Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry. 1995 Feb 21;34(7):2203–2211. doi: 10.1021/bi00007a014. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Gaertig J., Cruz M. A., Bowen J., Gu L., Pennock D. G., Gorovsky M. A. Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila. J Cell Biol. 1995 Jun;129(5):1301–1310. doi: 10.1083/jcb.129.5.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaertig J., Gorovsky M. A. Efficient mass transformation of Tetrahymena thermophila by electroporation of conjugants. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9196–9200. doi: 10.1073/pnas.89.19.9196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaertig J., Gu L., Hai B., Gorovsky M. A. High frequency vector-mediated transformation and gene replacement in Tetrahymena. Nucleic Acids Res. 1994 Dec 11;22(24):5391–5398. doi: 10.1093/nar/22.24.5391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaertig J., Thatcher T. H., Gu L., Gorovsky M. A. Electroporation-mediated replacement of a positively and negatively selectable beta-tubulin gene in Tetrahymena thermophila. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4549–4553. doi: 10.1073/pnas.91.10.4549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaertig J., Thatcher T. H., McGrath K. E., Callahan R. C., Gorovsky M. A. Perspectives on tubulin isotype function and evolution based on the observation that Tetrahymena thermophila microtubules contain a single alpha- and beta-tubulin. Cell Motil Cytoskeleton. 1993;25(3):243–253. doi: 10.1002/cm.970250305. [DOI] [PubMed] [Google Scholar]
- Gorovsky M. A., Yao M. C., Keevert J. B., Pleger G. L. Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol. 1975;9(0):311–327. doi: 10.1016/s0091-679x(08)60080-1. [DOI] [PubMed] [Google Scholar]
- Grimes A., McArdle H. J., Mercer J. F. A total extract dot blot hybridization procedure for mRNA quantitation in small samples of tissues or cultured cells. Anal Biochem. 1988 Aug 1;172(2):436–443. doi: 10.1016/0003-2697(88)90466-6. [DOI] [PubMed] [Google Scholar]
- Hesketh J. E., Pryme I. F. Interaction between mRNA, ribosomes and the cytoskeleton. Biochem J. 1991 Jul 1;277(Pt 1):1–10. doi: 10.1042/bj2770001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirano-Ohnishi J., Watanabe Y. Ca2+/calmodulin-dependent phosphorylation of ciliary beta-tubulin in Tetrahymena. J Biochem. 1989 Jun;105(6):858–860. doi: 10.1093/oxfordjournals.jbchem.a122766. [DOI] [PubMed] [Google Scholar]
- Jordan M. A., Toso R. J., Thrower D., Wilson L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9552–9556. doi: 10.1073/pnas.90.20.9552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaczanowski A., Gaertig J., Kubiak J. Effect of the antitubulin drug nocodazole on meiosis and postmeiotic development in Tetrahymena thermophila. Induction of achiasmatic meiosis. Exp Cell Res. 1985 May;158(1):244–256. doi: 10.1016/0014-4827(85)90447-1. [DOI] [PubMed] [Google Scholar]
- Kaczanowski A., Ramel M., Kaczanowska J., Wheatley D. Macronuclear differentiation in conjugating pairs of Tetrahymena treated with the antitubulin drug nocodazole. Exp Cell Res. 1991 Aug;195(2):330–337. doi: 10.1016/0014-4827(91)90381-4. [DOI] [PubMed] [Google Scholar]
- Kahn R. W., Andersen B. H., Brunk C. F. Transformation of Tetrahymena thermophila by microinjection of a foreign gene. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9295–9299. doi: 10.1073/pnas.90.20.9295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirschner M., Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell. 1986 May 9;45(3):329–342. doi: 10.1016/0092-8674(86)90318-1. [DOI] [PubMed] [Google Scholar]
- Lee V. D., Huang B. Missense mutations at lysine 350 in beta 2-tubulin confer altered sensitivity to microtubule inhibitors in Chlamydomonas. Plant Cell. 1990 Nov;2(11):1051–1057. doi: 10.1105/tpc.2.11.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludueña R. F., Banerjee A., Khan I. A. Tubulin structure and biochemistry. Curr Opin Cell Biol. 1992 Feb;4(1):53–57. doi: 10.1016/0955-0674(92)90058-k. [DOI] [PubMed] [Google Scholar]
- MacRae T. H. Towards an understanding of microtubule function and cell organization: an overview. Biochem Cell Biol. 1992 Oct-Nov;70(10-11):835–841. doi: 10.1139/o92-131. [DOI] [PubMed] [Google Scholar]
- Machemer H., Ogura A. Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol. 1979 Nov;296:49–60. doi: 10.1113/jphysiol.1979.sp012990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGrath K. E., Yu S. M., Heruth D. P., Kelly A. A., Gorovsky M. A. Regulation and evolution of the single alpha-tubulin gene of the ciliate Tetrahymena thermophila. Cell Motil Cytoskeleton. 1994;27(3):272–283. doi: 10.1002/cm.970270308. [DOI] [PubMed] [Google Scholar]
- Paschal B. M., Mikami A., Pfister K. K., Vallee R. B. Homology of the 74-kD cytoplasmic dynein subunit with a flagellar dynein polypeptide suggests an intracellular targeting function. J Cell Biol. 1992 Sep;118(5):1133–1143. doi: 10.1083/jcb.118.5.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pennock D. G., Thatcher T., Bowen J., Bruns P. J., Gorovsky M. A. A conditional mutant having paralyzed cilia and a block in cytokinesis is rescued by cytoplasmic exchange in Tetrahymena thermophila. Genetics. 1988 Nov;120(3):697–705. doi: 10.1093/genetics/120.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pennock D. G., Thatcher T., Gorovsky M. A. A temperature-sensitive mutation affecting cilia regeneration, nuclear development, and the cell cycle of Tetrahymena thermophila is rescued by cytoplasmic exchange. Mol Cell Biol. 1988 Jul;8(7):2681–2689. doi: 10.1128/mcb.8.7.2681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pokrywka N. J., Stephenson E. C. Microtubules are a general component of mRNA localization systems in Drosophila oocytes. Dev Biol. 1995 Jan;167(1):363–370. doi: 10.1006/dbio.1995.1030. [DOI] [PubMed] [Google Scholar]
- Pokrywka N. J., Stephenson E. C. Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis. Development. 1991 Sep;113(1):55–66. doi: 10.1242/dev.113.1.55. [DOI] [PubMed] [Google Scholar]
- Schibler M. J., Huang B. The colR4 and colR15 beta-tubulin mutations in Chlamydomonas reinhardtii confer altered sensitivities to microtubule inhibitors and herbicides by enhancing microtubule stability. J Cell Biol. 1991 May;113(3):605–614. doi: 10.1083/jcb.113.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seyfert H. M., Kohle D., Jenovai S. Induced tubulin synthesis is caused by induced gene transcription in Tetrahymena. Exp Cell Res. 1987 Jul;171(1):178–185. doi: 10.1016/0014-4827(87)90260-6. [DOI] [PubMed] [Google Scholar]
- Singer R. H. The cytoskeleton and mRNA localization. Curr Opin Cell Biol. 1992 Feb;4(1):15–19. doi: 10.1016/0955-0674(92)90053-f. [DOI] [PubMed] [Google Scholar]
- Soares H., Cyrne L., Barahona I., Rodrigues-Pousada C. Different patterns of expression of beta-tubulin genes in Tetrahymena pyriformis during reciliation. Eur J Biochem. 1991 Apr 23;197(2):291–299. doi: 10.1111/j.1432-1033.1991.tb15910.x. [DOI] [PubMed] [Google Scholar]
- Stargell L. A., Heruth D. P., Gaertig J., Gorovsky M. A. Drugs affecting microtubule dynamics increase alpha-tubulin mRNA accumulation via transcription in Tetrahymena thermophila. Mol Cell Biol. 1992 Apr;12(4):1443–1450. doi: 10.1128/mcb.12.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stargell L. A., Karrer K. M., Gorovsky M. A. Transcriptional regulation of gene expression in Tetrahymena thermophila. Nucleic Acids Res. 1990 Nov 25;18(22):6637–6639. doi: 10.1093/nar/18.22.6637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suprenant K. A. Microtubules, ribosomes, and RNA: evidence for cytoplasmic localization and translational regulation. Cell Motil Cytoskeleton. 1993;25(1):1–9. doi: 10.1002/cm.970250102. [DOI] [PubMed] [Google Scholar]
- Theodorakis N. G., Cleveland D. W. Physical evidence for cotranslational regulation of beta-tubulin mRNA degradation. Mol Cell Biol. 1992 Feb;12(2):791–799. doi: 10.1128/mcb.12.2.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yen T. J., Gay D. A., Pachter J. S., Cleveland D. W. Autoregulated changes in stability of polyribosome-bound beta-tubulin mRNAs are specified by the first 13 translated nucleotides. Mol Cell Biol. 1988 Mar;8(3):1224–1235. doi: 10.1128/mcb.8.3.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yisraeli J. K., Sokol S., Melton D. A. A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA. Development. 1990 Feb;108(2):289–298. doi: 10.1242/dev.108.2.289. [DOI] [PubMed] [Google Scholar]