Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Oct;15(10):5369–5375. doi: 10.1128/mcb.15.10.5369

Identification of a candidate c-mos repressor that restricts transcription of germ cell-specific genes.

W Xu 1, G M Cooper 1
PMCID: PMC230786  PMID: 7565687

Abstract

The c-mos proto-oncogene is specifically expressed in female and male germ cells. Previous studies identified a negative regulatory element (NRE) upstream of the c-mos promoter that suppresses c-mos transcription in transfected NIH 3T3 cells. In this study, we used gel shift assays to detect proteins in nuclear extracts of NIH 3T3 cells that bind to the c-mos NRE in a sequence-specific manner. One protein was found to bind to a region of the NRE which was shown by site-directed mutagenesis to be required for suppression of c-mos transcription. This factor was present in nuclear extracts of several somatic cell lines and tissues but not in male germ cells in which c-mos is transcribed, suggesting that it is a somatic cell repressor of c-mos transcription. The binding site of the candidate repressor within the c-mos NRE consists of sequences related to putative NREs identified in two other male germ cell-specific genes (encoding protamine 2 and phosphoglycerate kinase 2). The c-mos repressor bound and could be UV cross-linked to these protamine 2 and phosphoglycerate kinase 2 gene sequences as a protein with an apparent molecular mass of approximately 30 kDa. The repressor binding site is also conserved in two other germ cell-specific genes (encoding testis-specific cytochrome c and heat shock-like protein 70), suggesting that the c-mos repressor may be generally involved in suppressing transcription of germ cell-specific genes in somatic cells.

Full Text

The Full Text of this article is available as a PDF (454.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews N. C., Faller D. V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991 May 11;19(9):2499–2499. doi: 10.1093/nar/19.9.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Chong J. A., Tapia-Ramírez J., Kim S., Toledo-Aral J. J., Zheng Y., Boutros M. C., Altshuller Y. M., Frohman M. A., Kraner S. D., Mandel G. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell. 1995 Mar 24;80(6):949–957. doi: 10.1016/0092-8674(95)90298-8. [DOI] [PubMed] [Google Scholar]
  4. Colledge W. H., Carlton M. B., Udy G. B., Evans M. J. Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature. 1994 Jul 7;370(6484):65–68. doi: 10.1038/370065a0. [DOI] [PubMed] [Google Scholar]
  5. Gebara M. M., McCarrey J. R. Protein-DNA interactions associated with the onset of testis-specific expression of the mammalian Pgk-2 gene. Mol Cell Biol. 1992 Apr;12(4):1422–1431. doi: 10.1128/mcb.12.4.1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gebauer F., Xu W., Cooper G. M., Richter J. D. Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J. 1994 Dec 1;13(23):5712–5720. doi: 10.1002/j.1460-2075.1994.tb06909.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldman D. S., Kiessling A. A., Cooper G. M. Post-transcriptional processing suggests that c-mos functions as a maternal message in mouse eggs. Oncogene. 1988 Aug;3(2):159–162. [PubMed] [Google Scholar]
  8. Goldman D. S., Kiessling A. A., Millette C. F., Cooper G. M. Expression of c-mos RNA in germ cells of male and female mice. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4509–4513. doi: 10.1073/pnas.84.13.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hake L. E., Hecht N. B. Utilization of an alternative transcription initiation site of somatic cytochrome c in the mouse produces a testis-specific cytochrome c mRNA. J Biol Chem. 1993 Mar 5;268(7):4788–4797. [PubMed] [Google Scholar]
  10. Hashimoto N., Watanabe N., Furuta Y., Tamemoto H., Sagata N., Yokoyama M., Okazaki K., Nagayoshi M., Takeda N., Ikawa Y. Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature. 1994 Jul 7;370(6484):68–71. doi: 10.1038/370068a0. [DOI] [PubMed] [Google Scholar]
  11. Kanki J. P., Donoghue D. J. Progression from meiosis I to meiosis II in Xenopus oocytes requires de novo translation of the mosxe protooncogene. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5794–5798. doi: 10.1073/pnas.88.13.5794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keshet E., Rosenberg M. P., Mercer J. A., Propst F., Vande Woude G. F., Jenkins N. A., Copeland N. G. Developmental regulation of ovarian-specific Mos expression. Oncogene. 1988 Mar;2(3):235–240. [PubMed] [Google Scholar]
  13. Mori N., Schoenherr C., Vandenbergh D. J., Anderson D. J. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron. 1992 Jul;9(1):45–54. doi: 10.1016/0896-6273(92)90219-4. [DOI] [PubMed] [Google Scholar]
  14. Mutter G. L., Grills G. S., Wolgemuth D. J. Evidence for the involvement of the proto-oncogene c-mos in mammalian meiotic maturation and possibly very early embryogenesis. EMBO J. 1988 Mar;7(3):683–689. doi: 10.1002/j.1460-2075.1988.tb02863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mutter G. L., Wolgemuth D. J. Distinct developmental patterns of c-mos protooncogene expression in female and male mouse germ cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5301–5305. doi: 10.1073/pnas.84.15.5301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Keefe S. J., Kiessling A. A., Cooper G. M. The c-mos gene product is required for cyclin B accumulation during meiosis of mouse eggs. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7869–7872. doi: 10.1073/pnas.88.17.7869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Keefe S. J., Wolfes H., Kiessling A. A., Cooper G. M. Microinjection of antisense c-mos oligonucleotides prevents meiosis II in the maturing mouse egg. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7038–7042. doi: 10.1073/pnas.86.18.7038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pal S. K., Zinkel S. S., Kiessling A. A., Cooper G. M. c-mos expression in mouse oocytes is controlled by initiator-related sequences immediately downstream of the transcription initiation site. Mol Cell Biol. 1991 Oct;11(10):5190–5196. doi: 10.1128/mcb.11.10.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Papkoff J., Verma I. M., Hunter T. Detection of a transforming gene product in cells transformed by Moloney murine sarcoma virus. Cell. 1982 Jun;29(2):417–426. doi: 10.1016/0092-8674(82)90158-1. [DOI] [PubMed] [Google Scholar]
  20. Paules R. S., Resnick J., Kasenally A. B., Ernst M. K., Donovan P., Vande Woude G. F. Characterization of activated and normal mouse Mos gene in murine 3T3 cells. Oncogene. 1992 Dec;7(12):2489–2498. [PubMed] [Google Scholar]
  21. Propst F., Rosenberg M. P., Iyer A., Kaul K., Vande Woude G. F. c-mos proto-oncogene RNA transcripts in mouse tissues: structural features, developmental regulation, and localization in specific cell types. Mol Cell Biol. 1987 May;7(5):1629–1637. doi: 10.1128/mcb.7.5.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Propst F., Vande Woude G. F. Expression of c-mos proto-oncogene transcripts in mouse tissues. Nature. 1985 Jun 6;315(6019):516–518. doi: 10.1038/315516a0. [DOI] [PubMed] [Google Scholar]
  23. Romrell L. J., Bellvé A. R., Fawcett D. W. Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev Biol. 1976 Mar;49(1):119–131. doi: 10.1016/0012-1606(76)90262-1. [DOI] [PubMed] [Google Scholar]
  24. Roy R. J., Gosselin P., Guérin S. L. A short protocol for micro-purification of nuclear proteins from whole animal tissue. Biotechniques. 1991 Dec;11(6):770–777. [PubMed] [Google Scholar]
  25. Sagata N., Oskarsson M., Copeland T., Brumbaugh J., Vande Woude G. F. Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature. 1988 Oct 6;335(6190):519–525. doi: 10.1038/335519a0. [DOI] [PubMed] [Google Scholar]
  26. Sagata N., Watanabe N., Vande Woude G. F., Ikawa Y. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature. 1989 Nov 30;342(6249):512–518. doi: 10.1038/342512a0. [DOI] [PubMed] [Google Scholar]
  27. Wisniewski J., Malezewski M., Krawczyk Z., Gedamu L. An upstream region of the rat spermatogenesis-specific heat-shock-like Hst70 gene confers testis-specific expression in transgenic mice. Eur J Biochem. 1993 Feb 15;212(1):137–143. doi: 10.1111/j.1432-1033.1993.tb17643.x. [DOI] [PubMed] [Google Scholar]
  28. Zinkel S. S., Pal S. K., Szeberényi J., Cooper G. M. Identification of a negative regulatory element that inhibits c-mos transcription in somatic cells. Mol Cell Biol. 1992 May;12(5):2029–2036. doi: 10.1128/mcb.12.5.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES