Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Oct;15(10):5499–5507. doi: 10.1128/mcb.15.10.5499

The zinc finger transcription factor Egr-1 potentiates macrophage differentiation of hematopoietic cells.

K Krishnaraju 1, H Q Nguyen 1, D A Liebermann 1, B Hoffman 1
PMCID: PMC230800  PMID: 7565701

Abstract

Previously we have shown that the zinc finger transcription factor Egr-1 is essential for and restricts differentiation of hematopoietic cells along the macrophage lineage, raising the possibility that Egr-1 actually plays a deterministic role in governing the development of hematopoietic precursor cells along the monocytic lineage. To test this hypothesis, we have taken advantage of interleukin-3-dependent 32Dcl3 hematopoietic precursor cells which, in addition to undergoing granulocytic differentiation in response to granulocyte colony-stimulating factor, were found to be induced for limited proliferation, but not differentiation, by granulocyte-macrophage colony-stimulating factor. It was shown that ectopic expression of Egr-1 blocked granulocyte colony-stimulating factor-induced terminal granulocytic differentiation, consistent with previous findings. In addition, ectopic expression of Egr-1 endowed 32Dcl3 cells with ability to be induced by granulocyte-macrophage colony-stimulating factor for terminal differentiation exclusively along the macrophage lineage. Thus, evidence that Egr-1 potentiates terminal macrophage differentiation has been obtained, suggesting that Egr-1 plays a deterministic role in governing the development of hematopoietic cells along the macrophage lineage.

Full Text

The Full Text of this article is available as a PDF (745.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdollahi A., Lord K. A., Hoffman-Liebermann B., Liebermann D. A. Interferon regulatory factor 1 is a myeloid differentiation primary response gene induced by interleukin 6 and leukemia inhibitory factor: role in growth inhibition. Cell Growth Differ. 1991 Aug;2(8):401–407. [PubMed] [Google Scholar]
  2. Bernstein S. H., Kharbanda S. M., Sherman M. L., Sukhatme V. P., Kufe D. W. Posttranscriptional regulation of the zinc finger-encoding EGR-1 gene by granulocyte-macrophage colony-stimulating factor in human U-937 monocytic leukemia cells: involvement of a pertussis toxin-sensitive G protein. Cell Growth Differ. 1991 Jun;2(6):273–278. [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Christy B. A., Lau L. F., Nathans D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with "zinc finger" sequences. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7857–7861. doi: 10.1073/pnas.85.21.7857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fibach E., Sachs L. Control of normal differentiation of myeloid leukemic cells. XI. Induction of a specific requirement for cell viability and growth during the differentiation of myeloid leukemic cells. J Cell Physiol. 1976 Oct;89(2):259–266. doi: 10.1002/jcp.1040890209. [DOI] [PubMed] [Google Scholar]
  6. Hoffman-Liebermann B., Liebermann D. A. Interleukin-6- and leukemia inhibitory factor-induced terminal differentiation of myeloid leukemia cells is blocked at an intermediate stage by constitutive c-myc. Mol Cell Biol. 1991 May;11(5):2375–2381. doi: 10.1128/mcb.11.5.2375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kreider B. L., Phillips P. D., Prystowsky M. B., Shirsat N., Pierce J. H., Tushinski R., Rovera G. Induction of the granulocyte-macrophage colony-stimulating factor (CSF) receptor by granulocyte CSF increases the differentiative options of a murine hematopoietic progenitor cell. Mol Cell Biol. 1990 Sep;10(9):4846–4853. doi: 10.1128/mcb.10.9.4846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lau L. F., Nathans D. Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1182–1186. doi: 10.1073/pnas.84.5.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Le Beau M. M., Espinosa R., 3rd, Neuman W. L., Stock W., Roulston D., Larson R. A., Keinanen M., Westbrook C. A. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5484–5488. doi: 10.1073/pnas.90.12.5484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee S. L., Tourtellotte L. C., Wesselschmidt R. L., Milbrandt J. Growth and differentiation proceeds normally in cells deficient in the immediate early gene NGFI-A. J Biol Chem. 1995 Apr 28;270(17):9971–9977. doi: 10.1074/jbc.270.17.9971. [DOI] [PubMed] [Google Scholar]
  11. Lemaire P., Revelant O., Bravo R., Charnay P. Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4691–4695. doi: 10.1073/pnas.85.13.4691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liebermann D. A., Hoffman-Liebermann B. Proto-oncogene expression and dissection of the myeloid growth to differentiation developmental cascade. Oncogene. 1989 May;4(5):583–592. [PubMed] [Google Scholar]
  13. Liebermann D., Hoffman-Liebermann B., Sachs L. Regulation and role of different macrophage-and granulocyte-inducing proteins in normal and leukemic myeloid cells. Int J Cancer. 1982 Feb 15;29(2):159–161. doi: 10.1002/ijc.2910290208. [DOI] [PubMed] [Google Scholar]
  14. Lord K. A., Abdollahi A., Hoffman-Liebermann B., Liebermann D. A. Dissection of the immediate early response of myeloid leukemia cells to terminal differentiation and growth inhibitory stimuli. Cell Growth Differ. 1990 Dec;1(12):637–645. [PubMed] [Google Scholar]
  15. Lord K. A., Abdollahi A., Hoffman-Liebermann B., Liebermann D. A. Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. Mol Cell Biol. 1993 Feb;13(2):841–851. doi: 10.1128/mcb.13.2.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lord K. A., Hoffman-Liebermann B., Liebermann D. A. Complexity of the immediate early response of myeloid cells to terminal differentiation and growth arrest includes ICAM-1, Jun-B and histone variants. Oncogene. 1990 Mar;5(3):387–396. [PubMed] [Google Scholar]
  17. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature. 1989 May 4;339(6219):27–30. doi: 10.1038/339027a0. [DOI] [PubMed] [Google Scholar]
  18. Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science. 1987 Nov 6;238(4828):797–799. doi: 10.1126/science.3672127. [DOI] [PubMed] [Google Scholar]
  19. Nguyen H. Q., Hoffman-Liebermann B., Liebermann D. A. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage. Cell. 1993 Jan 29;72(2):197–209. doi: 10.1016/0092-8674(93)90660-i. [DOI] [PubMed] [Google Scholar]
  20. Park L. S., Martin U., Sorensen R., Luhr S., Morrissey P. J., Cosman D., Larsen A. Cloning of the low-affinity murine granulocyte-macrophage colony-stimulating factor receptor and reconstitution of a high-affinity receptor complex. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4295–4299. doi: 10.1073/pnas.89.10.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ruscetti F. W., Dubois C., Falk L. A., Jacobsen S. E., Sing G., Longo D. L., Wiltrout R. H., Keller J. R. In vivo and in vitro effects of TGF-beta 1 on normal and neoplastic haemopoiesis. Ciba Found Symp. 1991;157:212–231. doi: 10.1002/9780470514061.ch14. [DOI] [PubMed] [Google Scholar]
  22. Sachs L. The molecular control of blood cell development. Science. 1987 Dec 4;238(4832):1374–1379. doi: 10.1126/science.3317831. [DOI] [PubMed] [Google Scholar]
  23. Selvakumaran M., Liebermann D. A., Hoffman-Liebermann B. Deregulated c-myb disrupts interleukin-6- or leukemia inhibitory factor-induced myeloid differentiation prior to c-myc: role in leukemogenesis. Mol Cell Biol. 1992 Jun;12(6):2493–2500. doi: 10.1128/mcb.12.6.2493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Selvakumaran M., Lin H. K., Sjin R. T., Reed J. C., Liebermann D. A., Hoffman B. The novel primary response gene MyD118 and the proto-oncogenes myb, myc, and bcl-2 modulate transforming growth factor beta 1-induced apoptosis of myeloid leukemia cells. Mol Cell Biol. 1994 Apr;14(4):2352–2360. doi: 10.1128/mcb.14.4.2352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seyfert V. L., McMahon S. B., Glenn W. D., Yellen A. J., Sukhatme V. P., Cao X. M., Monroe J. G. Methylation of an immediate-early inducible gene as a mechanism for B cell tolerance induction. Science. 1990 Nov 9;250(4982):797–800. doi: 10.1126/science.2237429. [DOI] [PubMed] [Google Scholar]
  26. Sukhatme V. P., Kartha S., Toback F. G., Taub R., Hoover R. G., Tsai-Morris C. H. A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res. 1987 Sep-Oct;1(4):343–355. [PubMed] [Google Scholar]
  27. Suva L. J., Ernst M., Rodan G. A. Retinoic acid increases zif268 early gene expression in rat preosteoblastic cells. Mol Cell Biol. 1991 May;11(5):2503–2510. doi: 10.1128/mcb.11.5.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Varnum B. C., Lim R. W., Kujubu D. A., Luner S. J., Kaufman S. E., Greenberger J. S., Gasson J. C., Herschman H. R. Granulocyte-macrophage colony-stimulating factor and tetradecanoyl phorbol acetate induce a distinct, restricted subset of primary-response TIS genes in both proliferating and terminally differentiated myeloid cells. Mol Cell Biol. 1989 Aug;9(8):3580–3583. doi: 10.1128/mcb.9.8.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ymer S., Tucker W. Q., Sanderson C. J., Hapel A. J., Campbell H. D., Young I. G. Constitutive synthesis of interleukin-3 by leukaemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature. 1985 Sep 19;317(6034):255–258. doi: 10.1038/317255a0. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES