Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Oct;15(10):5516–5523. doi: 10.1128/mcb.15.10.5516

The chicken HMG-17 gene is dispensable for cell growth in vitro.

Y Li 1, J B Dodgson 1
PMCID: PMC230802  PMID: 7565703

Abstract

HMG-17 is a highly conserved and ubiquitous nonhistone chromosomal protein that binds to nucleosome core particles. HMG-17 and HMG-14 form a family of chromosomal proteins that have been reported to bind preferentially to regions of active chromatin structure. To study the functional role of the single-copy chicken HMG-17 gene, null mutants were generated by targeted gene disruption in a chicken lymphoid cell line, DT40. Heterozygous and homozygous null mutant cell lines were generated by two independent selection strategies. Heterozygous null mutant lines produced about half the normal level of HMG-17 protein, and homozygous null lines produced no detectable HMG-17. No significant changes in cell phenotype were observed in cells harboring either singly or doubly disrupted HMG-17 genes, and no compensatory changes in HMG-14 or histone protein levels were observed. It is concluded that HMG-17 protein is not required for normal growth of avian cell lines in vitro, nor does the absence of HMG-17 protein lead to any major changes in cellular phenotype, at least in lymphoid cells.

Full Text

The Full Text of this article is available as a PDF (407.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfonso P. J., Crippa M. P., Hayes J. J., Bustin M. The footprint of chromosomal proteins HMG-14 and HMG-17 on chromatin subunits. J Mol Biol. 1994 Feb 11;236(1):189–198. doi: 10.1006/jmbi.1994.1128. [DOI] [PubMed] [Google Scholar]
  2. Baba T. W., Giroir B. P., Humphries E. H. Cell lines derived from avian lymphomas exhibit two distinct phenotypes. Virology. 1985 Jul 15;144(1):139–151. doi: 10.1016/0042-6822(85)90312-5. [DOI] [PubMed] [Google Scholar]
  3. Bellard M., Dretzen G., Giangrande A., Ramain P. Nuclease digestion of transcriptionally active chromatin. Methods Enzymol. 1989;170:317–346. doi: 10.1016/0076-6879(89)70054-9. [DOI] [PubMed] [Google Scholar]
  4. Browne D. L., Dodgson J. B. The gene encoding chicken chromosomal protein HMG-14a is transcribed into multiple mRNAs. Gene. 1993 Feb 28;124(2):199–206. doi: 10.1016/0378-1119(93)90394-i. [DOI] [PubMed] [Google Scholar]
  5. Buerstedde J. M., Takeda S. Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell. 1991 Oct 4;67(1):179–188. doi: 10.1016/0092-8674(91)90581-i. [DOI] [PubMed] [Google Scholar]
  6. Bustin M., Becerra P. S., Crippa M. P., Lehn D. A., Pash J. M., Shiloach J. Recombinant human chromosomal proteins HMG-14 and HMG-17. Nucleic Acids Res. 1991 Jun 11;19(11):3115–3121. doi: 10.1093/nar/19.11.3115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bustin M., Crippa M. P., Pash J. M. Immunochemical analysis of the exposure of high mobility group protein 14 and 17 surfaces in chromatin. J Biol Chem. 1990 Nov 25;265(33):20077–20080. [PubMed] [Google Scholar]
  8. Bustin M., Lehn D. A., Landsman D. Structural features of the HMG chromosomal proteins and their genes. Biochim Biophys Acta. 1990 Jul 30;1049(3):231–243. doi: 10.1016/0167-4781(90)90092-g. [DOI] [PubMed] [Google Scholar]
  9. Campbell C. E., Worton R. G. Segregation of recessive phenotypes in somatic cell hybrids: role of mitotic recombination, gene inactivation, and chromosome nondisjunction. Mol Cell Biol. 1981 Apr;1(4):336–346. doi: 10.1128/mcb.1.4.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chomczynski P. One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal Biochem. 1992 Feb 14;201(1):134–139. doi: 10.1016/0003-2697(92)90185-a. [DOI] [PubMed] [Google Scholar]
  11. Crippa M. P., Trieschmann L., Alfonso P. J., Wolffe A. P., Bustin M. Deposition of chromosomal protein HMG-17 during replication affects the nucleosomal ladder and transcriptional potential of nascent chromatin. EMBO J. 1993 Oct;12(10):3855–3864. doi: 10.1002/j.1460-2075.1993.tb06064.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ding H. F., Rimsky S., Batson S. C., Bustin M., Hansen U. Stimulation of RNA polymerase II elongation by chromosomal protein HMG-14. Science. 1994 Aug 5;265(5173):796–799. doi: 10.1126/science.8047885. [DOI] [PubMed] [Google Scholar]
  13. Dodgson J. B., Browne D. L., Black A. J. Chicken chromosomal protein HMG-14 and HMG-17 cDNA clones: isolation, characterization and sequence comparison. Gene. 1988 Mar 31;63(2):287–295. doi: 10.1016/0378-1119(88)90532-x. [DOI] [PubMed] [Google Scholar]
  14. Druckmann S., Mendelson E., Landsman D., Bustin M. Immunofractionation of DNA sequences associated with HMG-17 in chromatin. Exp Cell Res. 1986 Oct;166(2):486–496. doi: 10.1016/0014-4827(86)90493-3. [DOI] [PubMed] [Google Scholar]
  15. Dugaiczyk A., Haron J. A., Stone E. M., Dennison O. E., Rothblum K. N., Schwartz R. J. Cloning and sequencing of a deoxyribonucleic acid copy of glyceraldehyde-3-phosphate dehydrogenase messenger ribonucleic acid isolated from chicken muscle. Biochemistry. 1983 Mar 29;22(7):1605–1613. doi: 10.1021/bi00276a013. [DOI] [PubMed] [Google Scholar]
  16. Federspiel M. J., Crittenden L. B., Hughes S. H. Expression of avian reticuloendotheliosis virus envelope confers host resistance. Virology. 1989 Nov;173(1):167–177. doi: 10.1016/0042-6822(89)90232-8. [DOI] [PubMed] [Google Scholar]
  17. Giri C., Landsman D., Soares N., Bustin M. Modulation of the cellular ratio of chromosomal high mobility group proteins 14 to 17 in transfected cells. J Biol Chem. 1987 Jul 15;262(20):9839–9843. [PubMed] [Google Scholar]
  18. Groden J., Nakamura Y., German J. Molecular evidence that homologous recombination occurs in proliferating human somatic cells. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4315–4319. doi: 10.1073/pnas.87.11.4315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hartman S. C., Mulligan R. C. Two dominant-acting selectable markers for gene transfer studies in mammalian cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8047–8051. doi: 10.1073/pnas.85.21.8047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hilberg F., Aguzzi A., Howells N., Wagner E. F. c-jun is essential for normal mouse development and hepatogenesis. Nature. 1993 Sep 9;365(6442):179–181. doi: 10.1038/365179a0. [DOI] [PubMed] [Google Scholar]
  21. Huang S. Y., Garrard W. T. Electrophoretic analyses of nucleosomes and other protein-DNA complexes. Methods Enzymol. 1989;170:116–142. doi: 10.1016/0076-6879(89)70044-6. [DOI] [PubMed] [Google Scholar]
  22. Jakobovits A., Vergara G. J., Kennedy J. L., Hales J. F., McGuinness R. P., Casentini-Borocz D. E., Brenner D. G., Otten G. R. Analysis of homozygous mutant chimeric mice: deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2551–2555. doi: 10.1073/pnas.90.6.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Landsman D., Srikantha T., Bustin M. Single copy gene for the chicken non-histone chromosomal protein HMG-17. J Biol Chem. 1988 Mar 15;263(8):3917–3923. [PubMed] [Google Scholar]
  24. Lennox R. W., Cohen L. H. Analysis of histone subtypes and their modified forms by polyacrylamide gel electrophoresis. Methods Enzymol. 1989;170:532–549. doi: 10.1016/0076-6879(89)70063-x. [DOI] [PubMed] [Google Scholar]
  25. Mardian J. K., Paton A. E., Bunick G. J., Olins D. E. Nucleosome cores have two specific binding sites for nonhistone chromosomal proteins HMG 14 and HMG 17. Science. 1980 Sep 26;209(4464):1534–1536. doi: 10.1126/science.7433974. [DOI] [PubMed] [Google Scholar]
  26. Mortensen R. M., Conner D. A., Chao S., Geisterfer-Lowrance A. A., Seidman J. G. Production of homozygous mutant ES cells with a single targeting construct. Mol Cell Biol. 1992 May;12(5):2391–2395. doi: 10.1128/mcb.12.5.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mortensen R. M. Double knockouts. Production of mutant cell lines in cardiovascular research. Hypertension. 1993 Oct;22(4):646–651. doi: 10.1161/01.hyp.22.4.646. [DOI] [PubMed] [Google Scholar]
  28. Müller U., Cristina N., Li Z. W., Wolfer D. P., Lipp H. P., Rülicke T., Brandner S., Aguzzi A., Weissmann C. Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell. 1994 Dec 2;79(5):755–765. doi: 10.1016/0092-8674(94)90066-3. [DOI] [PubMed] [Google Scholar]
  29. Nelson F. K., Frankel W., Rajan T. V. Mitotic recombination is responsible for the loss of heterozygosity in cultured murine cell lines. Mol Cell Biol. 1989 Mar;9(3):1284–1288. doi: 10.1128/mcb.9.3.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pash J. M., Alfonso P. J., Bustin M. Aberrant expression of high mobility group chromosomal protein 14 affects cellular differentiation. J Biol Chem. 1993 Jun 25;268(18):13632–13638. [PubMed] [Google Scholar]
  31. Paton A. E., Wilkinson-Singley E., Olins D. E. Nonhistone nuclear high mobility group proteins 14 and 17 stabilize nucleosome core particles. J Biol Chem. 1983 Nov 10;258(21):13221–13229. [PubMed] [Google Scholar]
  32. Reynaud C. A., Dahan A., Weill J. C. Complete sequence of a chicken lambda light chain immunoglobulin derived from the nucleotide sequence of its mRNA. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4099–4103. doi: 10.1073/pnas.80.13.4099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shakoori A. R., Owen T. A., Shalhoub V., Stein J. L., Bustin M., Stein G. S., Lian J. B. Differential expression of the chromosomal high mobility group proteins 14 and 17 during the onset of differentiation in mammalian osteoblasts and promyelocytic leukemia cells. J Cell Biochem. 1993 Apr;51(4):479–487. doi: 10.1002/jcb.2400510413. [DOI] [PubMed] [Google Scholar]
  34. Srikantha T., Landsman D., Bustin M. Cloning of the chicken chromosomal protein HMG-14 cDNA reveals a unique protein with a conserved DNA binding domain. J Biol Chem. 1988 Sep 25;263(27):13500–13503. [PubMed] [Google Scholar]
  35. Takeda S., Masteller E. L., Thompson C. B., Buerstedde J. M. RAG-2 expression is not essential for chicken immunoglobulin gene conversion. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4023–4027. doi: 10.1073/pnas.89.9.4023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thompson C. B., Neiman P. E. Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell. 1987 Feb 13;48(3):369–378. doi: 10.1016/0092-8674(87)90188-7. [DOI] [PubMed] [Google Scholar]
  37. Tremethick D. J., Drew H. R. High mobility group proteins 14 and 17 can space nucleosomes in vitro. J Biol Chem. 1993 May 25;268(15):11389–11393. [PubMed] [Google Scholar]
  38. Urban M. K., Franklin S. G., Zweidler A. Isolation and characterization of the histone variants in chicken erythrocytes. Biochemistry. 1979 Sep 4;18(18):3952–3960. doi: 10.1021/bi00585a017. [DOI] [PubMed] [Google Scholar]
  39. Weisbrod S. Active chromatin. Nature. 1982 May 27;297(5864):289–295. doi: 10.1038/297289a0. [DOI] [PubMed] [Google Scholar]
  40. Weisbrod S., Groudine M., Weintraub H. Interaction of HMG 14 and 17 with actively transcribed genes. Cell. 1980 Jan;19(1):289–301. doi: 10.1016/0092-8674(80)90410-9. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES