Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Nov;15(11):5898–5905. doi: 10.1128/mcb.15.11.5898

Phenotypic reversions at the W/Kit locus mediated by mitotic recombination in mice.

P De Sepulveda 1, J L Guenet 1, J J Panthier 1
PMCID: PMC230841  PMID: 7565742

Abstract

The mouse W locus encodes Kit, the receptor tyrosine kinase for stem cell factor (SCF). Kit is required for several developmental processes, including the proliferation and survival of melanoblasts. Because of the nearly complete failure of Wrio/+ melanoblasts to colonize the skin, the costs of Wrio/+ mice are characterized by a majority of white hairs interspersed among pigmented hairs, giving a roan effect. However, 3.6% of Wrio/+ mice exhibit phenotypic reversions, i.e., spots of wild-type color on their coats with an otherwise mutant phenotype. Melanocyte cell lines were derived from each of six independent reversion spots on the skin of (C57BL/6 x DBA/2)F1 Wrio/+ mice. All six melanocyte cell lines exhibited the general characteristics common to normal, nonimmortal mouse melanocytes. Of these, three revertant cell lines had lost the dominant-negative Wrio allele following mitotic recombination between the centromere and the W locus. One of the cell lines remained Wrio/+ but showed (i) stimulation in response to SCF and (ii) increased Kit expression, suggesting that the Wrio mutation can be rescued by increased endogenous expression of the c-kit proto-oncogene. Finally, two cell lines showed no detectable genetic change at the W/Kit locus and failed to respond to SCF stimulation in vitro. These results demonstrate that mitotic recombination can create large patches of wild-type hair on the coats of Wrio/+ mutant mice. This shows that mitotic recombination occurs spontaneously in normal healthy tissue in vivo. Moreover, these experiments confirm that other mechanisms, not associated with loss of heterozygosity, may account for the coat color reversion phenotype.

Full Text

The Full Text of this article is available as a PDF (832.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett D. C., Cooper P. J., Dexter T. J., Devlin L. M., Heasman J., Nester B. Cloned mouse melanocyte lines carrying the germline mutations albino and brown: complementation in culture. Development. 1989 Feb;105(2):379–385. doi: 10.1242/dev.105.2.379. [DOI] [PubMed] [Google Scholar]
  2. Bennett D. C., Cooper P. J., Hart I. R. A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int J Cancer. 1987 Mar 15;39(3):414–418. doi: 10.1002/ijc.2910390324. [DOI] [PubMed] [Google Scholar]
  3. Besmer P., Manova K., Duttlinger R., Huang E. J., Packer A., Gyssler C., Bachvarova R. F. The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Dev Suppl. 1993:125–137. [PubMed] [Google Scholar]
  4. Bianchi A. B., Navone N. M., Aldaz C. M., Conti C. J. Overlapping loss of heterozygosity by mitotic recombination on mouse chromosome 7F1-ter in skin carcinogenesis. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7590–7594. doi: 10.1073/pnas.88.17.7590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bremner R., Balmain A. Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell. 1990 May 4;61(3):407–417. doi: 10.1016/0092-8674(90)90523-h. [DOI] [PubMed] [Google Scholar]
  6. Brunner D., Oellers N., Szabad J., Biggs W. H., 3rd, Zipursky S. L., Hafen E. A gain-of-function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell. 1994 Mar 11;76(5):875–888. doi: 10.1016/0092-8674(94)90362-x. [DOI] [PubMed] [Google Scholar]
  7. Cavenee W. K., Koufos A., Hansen M. F. Recessive mutant genes predisposing to human cancer. Mutat Res. 1986 Jul;168(1):3–14. doi: 10.1016/0165-1110(86)90019-9. [DOI] [PubMed] [Google Scholar]
  8. De Sepulveda P., Peyrieras N., Panthier J. J. Instability at the W/c-kit locus in mice: analysis of melanocyte cell lines derived from reversion spots. Oncogene. 1994 Sep;9(9):2655–2661. [PubMed] [Google Scholar]
  9. De Sepulveda P., Salaün P., Maas N., André C., Panthier J. J. SARs do not impair position-dependent expression of a kit/lacZ transgene. Biochem Biophys Res Commun. 1995 Jun 26;211(3):735–741. doi: 10.1006/bbrc.1995.1874. [DOI] [PubMed] [Google Scholar]
  10. Dietrich W. F., Miller J. C., Steen R. G., Merchant M., Damron D., Nahf R., Gross A., Joyce D. C., Wessel M., Dredge R. D. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nat Genet. 1994 Jun;7(2 Spec No):220–245. doi: 10.1038/ng0694supp-220. [DOI] [PubMed] [Google Scholar]
  11. Dubreuil P., Forrester L., Rottapel R., Reedijk M., Fujita J., Bernstein A. The c-fms gene complements the mitogenic defect in mast cells derived from mutant W mice but not mi (microphthalmia) mice. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2341–2345. doi: 10.1073/pnas.88.6.2341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Funasaka Y., Boulton T., Cobb M., Yarden Y., Fan B., Lyman S. D., Williams D. E., Anderson D. M., Zakut R., Mishima Y. c-Kit-kinase induces a cascade of protein tyrosine phosphorylation in normal human melanocytes in response to mast cell growth factor and stimulates mitogen-activated protein kinase but is down-regulated in melanomas. Mol Biol Cell. 1992 Feb;3(2):197–209. doi: 10.1091/mbc.3.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fung Y. K., Murphree A. L., T'Ang A., Qian J., Hinrichs S. H., Benedict W. F. Structural evidence for the authenticity of the human retinoblastoma gene. Science. 1987 Jun 26;236(4809):1657–1661. doi: 10.1126/science.2885916. [DOI] [PubMed] [Google Scholar]
  14. Gondo Y., Gardner J. M., Nakatsu Y., Durham-Pierre D., Deveau S. A., Kuper C., Brilliant M. H. High-frequency genetic reversion mediated by a DNA duplication: the mouse pink-eyed unstable mutation. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):297–301. doi: 10.1073/pnas.90.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Groden J., Nakamura Y., German J. Molecular evidence that homologous recombination occurs in proliferating human somatic cells. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4315–4319. doi: 10.1073/pnas.87.11.4315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grüneberg H. The case for somatic crossing over in the mouse. Genet Res. 1966 Feb;7(1):58–75. doi: 10.1017/s0016672300009472. [DOI] [PubMed] [Google Scholar]
  17. Halaban R., Langdon R., Birchall N., Cuono C., Baird A., Scott G., Moellmann G., McGuire J. Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes. J Cell Biol. 1988 Oct;107(4):1611–1619. doi: 10.1083/jcb.107.4.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hayashi S., Kunisada T., Ogawa M., Yamaguchi K., Nishikawa S. Exon skipping by mutation of an authentic splice site of c-kit gene in W/W mouse. Nucleic Acids Res. 1991 Mar 25;19(6):1267–1271. doi: 10.1093/nar/19.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Henson V., Palmer L., Banks S., Nadeau J. H., Carlson G. A. Loss of heterozygosity and mitotic linkage maps in the mouse. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6486–6490. doi: 10.1073/pnas.88.15.6486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Herlyn M., Kath R., Williams N., Valyi-Nagy I., Rodeck U. Growth-regulatory factors for normal, premalignant, and malignant human cells in vitro. Adv Cancer Res. 1990;54:213–234. doi: 10.1016/s0065-230x(08)60812-x. [DOI] [PubMed] [Google Scholar]
  21. Huizinga J. D., Thuneberg L., Klüppel M., Malysz J., Mikkelsen H. B., Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995 Jan 26;373(6512):347–349. doi: 10.1038/373347a0. [DOI] [PubMed] [Google Scholar]
  22. Iwamoto T., Takahashi M., Ohbayashi M., Nakashima I. The ret oncogene can induce melanogenesis and melanocyte development in Wv/Wv mice. Exp Cell Res. 1992 Jun;200(2):410–415. doi: 10.1016/0014-4827(92)90189-f. [DOI] [PubMed] [Google Scholar]
  23. Jackson I. J., Bennett D. C. Identification of the albino mutation of mouse tyrosinase by analysis of an in vitro revertant. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7010–7014. doi: 10.1073/pnas.87.18.7010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. James C. D., Carlbom E., Nordenskjold M., Collins V. P., Cavenee W. K. Mitotic recombination of chromosome 17 in astrocytomas. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2858–2862. doi: 10.1073/pnas.86.8.2858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Keshet E., Lyman S. D., Williams D. E., Anderson D. M., Jenkins N. A., Copeland N. G., Parada L. F. Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J. 1991 Sep;10(9):2425–2435. doi: 10.1002/j.1460-2075.1991.tb07782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lahav R., Lecoin L., Ziller C., Nataf V., Carnahan J. F., Martin F. H., Le Douarin N. M. Effect of the Steel gene product on melanogenesis in avian neural crest cell cultures. Differentiation. 1994 Dec;58(2):133–139. doi: 10.1046/j.1432-0436.1995.5820133.x. [DOI] [PubMed] [Google Scholar]
  27. Larue L., Dougherty N., Bradl M., Mintz B. Melanocyte culture lines from Tyr-SV40E transgenic mice: models for the molecular genetic evolution of malignant melanoma. Oncogene. 1993 Mar;8(3):523–531. [PubMed] [Google Scholar]
  28. Larue L., Dougherty N., Porter S., Mintz B. Spontaneous malignant transformation of melanocytes explanted from Wf/Wf mice with a Kit kinase-domain mutation. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7816–7820. doi: 10.1073/pnas.89.16.7816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lassam N., Bickford S. Loss of c-kit expression in cultured melanoma cells. Oncogene. 1992 Jan;7(1):51–56. [PubMed] [Google Scholar]
  30. Lu X., Chou T. B., Williams N. G., Roberts T., Perrimon N. Control of cell fate determination by p21ras/Ras1, an essential component of torso signaling in Drosophila. Genes Dev. 1993 Apr;7(4):621–632. doi: 10.1101/gad.7.4.621. [DOI] [PubMed] [Google Scholar]
  31. Morley A. A. Mitotic recombination in mammalian cells in vivo. Mutat Res. 1991 Sep-Oct;250(1-2):345–349. doi: 10.1016/0027-5107(91)90191-p. [DOI] [PubMed] [Google Scholar]
  32. Motro B., van der Kooy D., Rossant J., Reith A., Bernstein A. Contiguous patterns of c-kit and steel expression: analysis of mutations at the W and Sl loci. Development. 1991 Dec;113(4):1207–1221. doi: 10.1242/dev.113.4.1207. [DOI] [PubMed] [Google Scholar]
  33. Natali P. G., Nicotra M. R., Winkler A. B., Cavaliere R., Bigotti A., Ullrich A. Progression of human cutaneous melanoma is associated with loss of expression of c-kit proto-oncogene receptor. Int J Cancer. 1992 Sep 9;52(2):197–201. doi: 10.1002/ijc.2910520207. [DOI] [PubMed] [Google Scholar]
  34. Nishikawa S., Kusakabe M., Yoshinaga K., Ogawa M., Hayashi S., Kunisada T., Era T., Sakakura T., Nishikawa S. In utero manipulation of coat color formation by a monoclonal anti-c-kit antibody: two distinct waves of c-kit-dependency during melanocyte development. EMBO J. 1991 Aug;10(8):2111–2118. doi: 10.1002/j.1460-2075.1991.tb07744.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nocka K., Tan J. C., Chiu E., Chu T. Y., Ray P., Traktman P., Besmer P. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J. 1990 Jun;9(6):1805–1813. doi: 10.1002/j.1460-2075.1990.tb08305.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Orr-Urtreger A., Avivi A., Zimmer Y., Givol D., Yarden Y., Lonai P. Developmental expression of c-kit, a proto-oncogene encoded by the W locus. Development. 1990 Aug;109(4):911–923. doi: 10.1242/dev.109.4.911. [DOI] [PubMed] [Google Scholar]
  37. Panthier J. J., Condamine H. Mitotic recombination in mammals. Bioessays. 1991 Jul;13(7):351–356. doi: 10.1002/bies.950130709. [DOI] [PubMed] [Google Scholar]
  38. Panthier J. J., Foote S., Chambraud B., Strosberg A. D., Corvol P., Rougeon F. Complete amino acid sequence and maturation of the mouse submaxillary gland renin precursor. Nature. 1982 Jul 1;298(5869):90–92. doi: 10.1038/298090a0. [DOI] [PubMed] [Google Scholar]
  39. Panthier J. J., Guénet J. L., Condamine H., Jacob F. Evidence for mitotic recombination in Wei/+ heterozygous mice. Genetics. 1990 May;125(1):175–182. doi: 10.1093/genetics/125.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Panthier J. J., Holm I., Rougeon F. The mouse Rn locus: S allele of the renin regulator gene results from a single structural gene duplication. EMBO J. 1982;1(11):1417–1421. doi: 10.1002/j.1460-2075.1982.tb01332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pawson T., Bernstein A. Receptor tyrosine kinases: genetic evidence for their role in Drosophila and mouse development. Trends Genet. 1990 Nov;6(11):350–356. doi: 10.1016/0168-9525(90)90276-c. [DOI] [PubMed] [Google Scholar]
  42. Rheinwald J. G., Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell. 1975 Nov;6(3):317–330. doi: 10.1016/0092-8674(75)90183-x. [DOI] [PubMed] [Google Scholar]
  43. Scrable H. J., Witte D. P., Lampkin B. C., Cavenee W. K. Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature. 1987 Oct 15;329(6140):645–647. doi: 10.1038/329645a0. [DOI] [PubMed] [Google Scholar]
  44. Searle A. G. Evidence from mutable genes concerning the origin of the germ line. Basic Life Sci. 1978;12:209–224. doi: 10.1007/978-1-4684-3390-6_16. [DOI] [PubMed] [Google Scholar]
  45. Takeda H., Yoshiki A., Nishikawa S., Nishikawa S., Kunisada T., Sakakura T., Amanuma H., Kusakabe M. Expression of c-kit, a proto-oncogene of the murine W locus, in cerebella of normal and neurological mutant mice: immunohistochemical and in situ hybridization analysis. Differentiation. 1992 Oct;51(2):121–127. doi: 10.1111/j.1432-0436.1992.tb00688.x. [DOI] [PubMed] [Google Scholar]
  46. Wilson R. E., Dooley T. P., Hart I. R. Induction of tumorigenicity and lack of in vitro growth requirement for 12-O-tetradecanoylphorbol-13-acetate by transfection of murine melanocytes with v-Ha-ras. Cancer Res. 1989 Feb 1;49(3):711–716. [PubMed] [Google Scholar]
  47. Yang-Feng T. L., Han H., Chen K. C., Li S. B., Claus E. B., Carcangiu M. L., Chambers S. K., Chambers J. T., Schwartz P. E. Allelic loss in ovarian cancer. Int J Cancer. 1993 Jun 19;54(4):546–551. doi: 10.1002/ijc.2910540405. [DOI] [PubMed] [Google Scholar]
  48. Zdarsky E., Favor J., Jackson I. J. The molecular basis of brown, an old mouse mutation, and of an induced revertant to wild type. Genetics. 1990 Oct;126(2):443–449. doi: 10.1093/genetics/126.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhu X., Dunn J. M., Goddard A. D., Squire J. A., Becker A., Phillips R. A., Gallie B. L. Mechanisms of loss of heterozygosity in retinoblastoma. Cytogenet Cell Genet. 1992;59(4):248–252. doi: 10.1159/000133261. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES