Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Nov;15(11):6139–6149. doi: 10.1128/mcb.15.11.6139

Identification of a silencer module which selectively represses cyclic AMP-responsive element-dependent gene expression.

K C Chung 1, D Huang 1, Y Chen 1, S Short 1, M L Short 1, Z Zhang 1, R A Jungmann 1
PMCID: PMC230865  PMID: 7565766

Abstract

The cyclic AMP (cAMP)-inducible promoter from the rat lactate dehydrogenase A subunit gene (LDH A) is associated with a distal negative regulatory element (LDH-NRE) that represses inherent basal and cAMP-inducible promoter activity. The element is of dyad symmetry, consisting of a palindromic sequence with two half-sites, 5'-TCTTG-3'. It represses the expression of an LDH A/chloramphenicol acetyltransferase (CAT) reporter gene in a dose-dependent, orientation- and position-independent fashion, suggesting that it is a true silencer element. Uniquely, it selectively represses cAMP-responsive element (CRE)-dependent transcription but has no effect on promoters lacking a CRE sequence. The repressing action of LDH-NRE could be overcome by cotransfection with LDH A/CAT vector oligonucleotides containing either the LDH-NRE or CRE sequence. This suggests that the reversal of repression was caused by the removal of functional active, limiting transacting factors which associate with LDH-NRE as well as with CRE. Gel mobility shift, footprinting, and Southwestern blotting assays demonstrated the presence of a 69-kDa protein with specific binding activity for LDH-NRE. Additionally, gel supershift assays with anti-CREB and anti-Fos antibodies indicate the presence of CREB and Fos or antigenically closely related proteins with the LDH-NRE/protein complex. We suggest that the LDH-NRE and CRE modules functionally interact to achieve negative modulation of cAMP-responsive LDH A transcriptional activity.

Full Text

The Full Text of this article is available as a PDF (831.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. C., Montminy M. R. Transsynaptic control of gene expression. Annu Rev Neurosci. 1993;16:17–29. doi: 10.1146/annurev.ne.16.030193.000313. [DOI] [PubMed] [Google Scholar]
  2. Benbrook D. M., Jones N. C. Heterodimer formation between CREB and JUN proteins. Oncogene. 1990 Mar;5(3):295–302. [PubMed] [Google Scholar]
  3. Busch S. J., Sassone-Corsi P. Dimers, leucine zippers and DNA-binding domains. Trends Genet. 1990 Feb;6(2):36–40. doi: 10.1016/0168-9525(90)90071-d. [DOI] [PubMed] [Google Scholar]
  4. Cahill M. A., Ernst W. H., Janknecht R., Nordheim A. Regulatory squelching. FEBS Lett. 1994 May 16;344(2-3):105–108. doi: 10.1016/0014-5793(94)00320-3. [DOI] [PubMed] [Google Scholar]
  5. Chu H. M., Tan Y., Kobierski L. A., Balsam L. B., Comb M. J. Activating transcription factor-3 stimulates 3',5'-cyclic adenosine monophosphate-dependent gene expression. Mol Endocrinol. 1994 Jan;8(1):59–68. doi: 10.1210/mend.8.1.8152431. [DOI] [PubMed] [Google Scholar]
  6. Clark A. R., Docherty K. Negative regulation of transcription in eukaryotes. Biochem J. 1993 Dec 15;296(Pt 3):521–541. doi: 10.1042/bj2960521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooke N. E., Baxter J. D. Structural analysis of the prolactin gene suggests a separate origin for its 5' end. Nature. 1982 Jun 17;297(5867):603–606. doi: 10.1038/297603a0. [DOI] [PubMed] [Google Scholar]
  8. Cowell I. G. Repression versus activation in the control of gene transcription. Trends Biochem Sci. 1994 Jan;19(1):38–42. doi: 10.1016/0968-0004(94)90172-4. [DOI] [PubMed] [Google Scholar]
  9. Delegeane A. M., Ferland L. H., Mellon P. L. Tissue-specific enhancer of the human glycoprotein hormone alpha-subunit gene: dependence on cyclic AMP-inducible elements. Mol Cell Biol. 1987 Nov;7(11):3994–4002. doi: 10.1128/mcb.7.11.3994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Derda D. F., Miles M. F., Schweppe J. S., Jungmann R. A. Cyclic AMP regulation of lactate dehydrogenase. Isoproterenol and N6,O2'-dibutyryl cyclic AMP increase the levels of lactate dehydrogenase-5 isozyme and its messenger RNA in rat C6 glioma cells. J Biol Chem. 1980 Dec 10;255(23):11112–11121. [PubMed] [Google Scholar]
  11. Dynan W. S. Modularity in promoters and enhancers. Cell. 1989 Jul 14;58(1):1–4. doi: 10.1016/0092-8674(89)90393-0. [DOI] [PubMed] [Google Scholar]
  12. Evans M. J., Scarpulla R. C. Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter. Characterization of upstream NRF-1, ATF, and intron Sp1 recognition sequences. J Biol Chem. 1989 Aug 25;264(24):14361–14368. [PubMed] [Google Scholar]
  13. Farron F., Hsu H. H., Knox W. E. Fetal-type isoenzymes in hepatic and nonhepatic rat tumors. Cancer Res. 1972 Feb;32(2):302–308. [PubMed] [Google Scholar]
  14. Ferreri K., Gill G., Montminy M. The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1210–1213. doi: 10.1073/pnas.91.4.1210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fink J. S., Verhave M., Kasper S., Tsukada T., Mandel G., Goodman R. H. The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6662–6666. doi: 10.1073/pnas.85.18.6662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Foulkes N. S., Borrelli E., Sassone-Corsi P. CREM gene: use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell. 1991 Feb 22;64(4):739–749. doi: 10.1016/0092-8674(91)90503-q. [DOI] [PubMed] [Google Scholar]
  17. Fujita T., Sakakibara J., Sudo Y., Miyamoto M., Kimura Y., Taniguchi T. Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. EMBO J. 1988 Nov;7(11):3397–3405. doi: 10.1002/j.1460-2075.1988.tb03213.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fukasawa K. M., Li S. S. Nucleotide sequence of the putative regulatory region of mouse lactate dehydrogenase-A gene. Biochem J. 1986 Apr 15;235(2):435–439. doi: 10.1042/bj2350435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. GOLDMAN R. D., KAPLAN N. O., HALL T. C. LACTIC DEHYDROGENASE IN HUMAN NEOPLASTIC TISSUES. Cancer Res. 1964 Apr;24:389–399. [PubMed] [Google Scholar]
  20. Gius D., Cao X. M., Rauscher F. J., 3rd, Cohen D. R., Curran T., Sukhatme V. P. Transcriptional activation and repression by Fos are independent functions: the C terminus represses immediate-early gene expression via CArG elements. Mol Cell Biol. 1990 Aug;10(8):4243–4255. doi: 10.1128/mcb.10.8.4243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goodbourn S., Maniatis T. Overlapping positive and negative regulatory domains of the human beta-interferon gene. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1447–1451. doi: 10.1073/pnas.85.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Goodwin R. G., Moncman C. L., Rottman F. M., Nilson J. H. Characterization and nucleotide sequence of the gene for the common alpha subunit of the bovine pituitary glycoprotein hormones. Nucleic Acids Res. 1983 Oct 11;11(19):6873–6882. doi: 10.1093/nar/11.19.6873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gurney A. L., Park E. A., Giralt M., Liu J., Hanson R. W. Opposing actions of Fos and Jun on transcription of the phosphoenolpyruvate carboxykinase (GTP) gene. Dominant negative regulation by Fos. J Biol Chem. 1992 Sep 5;267(25):18133–18139. [PubMed] [Google Scholar]
  24. Habener J. F. Cyclic AMP response element binding proteins: a cornucopia of transcription factors. Mol Endocrinol. 1990 Aug;4(8):1087–1094. doi: 10.1210/mend-4-8-1087. [DOI] [PubMed] [Google Scholar]
  25. Hai T., Curran T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3720–3724. doi: 10.1073/pnas.88.9.3720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Halazonetis T. D., Georgopoulos K., Greenberg M. E., Leder P. c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell. 1988 Dec 2;55(5):917–924. doi: 10.1016/0092-8674(88)90147-x. [DOI] [PubMed] [Google Scholar]
  27. Hay N., Takimoto M., Bishop J. M. A FOS protein is present in a complex that binds a negative regulator of MYC. Genes Dev. 1989 Mar;3(3):293–303. doi: 10.1101/gad.3.3.293. [DOI] [PubMed] [Google Scholar]
  28. Herschbach B. M., Johnson A. D. Transcriptional repression in eukaryotes. Annu Rev Cell Biol. 1993;9:479–509. doi: 10.1146/annurev.cb.09.110193.002403. [DOI] [PubMed] [Google Scholar]
  29. Hod Y., Yoo-Warren H., Hanson R. W. The gene encoding the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) from the chicken. J Biol Chem. 1984 Dec 25;259(24):15609–15614. [PubMed] [Google Scholar]
  30. Hou E. W., Li S. S. Cyclic AMP-induced expression of the mouse lactate dehydrogenase-A promoter-cat fusion gene in Chinese hamster ovary wild-type cells, but not in cAMP-dependent protein kinase mutant cells. Biochem Biophys Res Commun. 1987 Aug 31;147(1):501–505. doi: 10.1016/s0006-291x(87)80149-3. [DOI] [PubMed] [Google Scholar]
  31. Huang D., Jungmann R. A. Transcriptional regulation of the lactate dehydrogenase A subunit gene by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. Mol Cell Endocrinol. 1995 Feb 27;108(1-2):87–94. doi: 10.1016/0303-7207(94)03459-7. [DOI] [PubMed] [Google Scholar]
  32. Hurst H. C., Totty N. F., Jones N. C. Identification and functional characterisation of the cellular activating transcription factor 43 (ATF-43) protein. Nucleic Acids Res. 1991 Sep 11;19(17):4601–4609. doi: 10.1093/nar/19.17.4601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ishiguro H., Kim K. T., Joh T. H., Kim K. S. Neuron-specific expression of the human dopamine beta-hydroxylase gene requires both the cAMP-response element and a silencer region. J Biol Chem. 1993 Aug 25;268(24):17987–17994. [PubMed] [Google Scholar]
  34. Jameson J. L., Jaffe R. C., Deutsch P. J., Albanese C., Habener J. F. The gonadotropin alpha-gene contains multiple protein binding domains that interact to modulate basal and cAMP-responsive transcription. J Biol Chem. 1988 Jul 15;263(20):9879–9886. [PubMed] [Google Scholar]
  35. Jungmann R. A., Kelley D. C., Miles M. F., Milkowski D. M. Cyclic AMP regulation of lactate dehydrogenase. Isoproterenol and N6,O2-dibutyryl cyclic amp increase the rate of transcription and change the stability of lactate dehydrogenase a subunit messenger RNA in rat C6 glioma cells. J Biol Chem. 1983 Apr 25;258(8):5312–5318. [PubMed] [Google Scholar]
  36. Kim K. S., Lee M. K., Carroll J., Joh T. H. Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element. J Biol Chem. 1993 Jul 25;268(21):15689–15695. [PubMed] [Google Scholar]
  37. Kirschmeier P. T., Housey G. M., Johnson M. D., Perkins A. S., Weinstein I. B. Construction and characterization of a retroviral vector demonstrating efficient expression of cloned cDNA sequences. DNA. 1988 Apr;7(3):219–225. doi: 10.1089/dna.1988.7.219. [DOI] [PubMed] [Google Scholar]
  38. Kouzarides T., Ziff E. Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding. Nature. 1989 Aug 17;340(6234):568–571. doi: 10.1038/340568a0. [DOI] [PubMed] [Google Scholar]
  39. Kuettel M. R., Squinto S. P., Kwast-Welfeld J., Schwoch G., Schweppe J. S., Jungmann R. A. Localization of nuclear subunits of cyclic AMP-dependent protein kinase by the immunocolloidal gold method. J Cell Biol. 1985 Sep;101(3):965–975. doi: 10.1083/jcb.101.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kwast-Welfeld J., Jungmann R. A. Hormonal regulation of nuclear cyclic AMP-dependent protein kinase subunit levels in rat ovaries. J Biol Chem. 1988 Oct 5;263(28):14343–14350. [PubMed] [Google Scholar]
  41. Kwast-Welfeld J., Soong C. J., Short M. L., Jungmann R. A. Identification of rat ovarian nuclear factors that interact with the cAMP-inducible lactate dehydrogenase A subunit promoter. J Biol Chem. 1989 Apr 25;264(12):6941–6947. [PubMed] [Google Scholar]
  42. Lalli E., Sassone-Corsi P. Signal transduction and gene regulation: the nuclear response to cAMP. J Biol Chem. 1994 Jul 1;269(26):17359–17362. [PubMed] [Google Scholar]
  43. Levine M., Manley J. L. Transcriptional repression of eukaryotic promoters. Cell. 1989 Nov 3;59(3):405–408. doi: 10.1016/0092-8674(89)90024-x. [DOI] [PubMed] [Google Scholar]
  44. Lucibello F. C., Slater E. P., Jooss K. U., Beato M., Müller R. Mutual transrepression of Fos and the glucocorticoid receptor: involvement of a functional domain in Fos which is absent in FosB. EMBO J. 1990 Sep;9(9):2827–2834. doi: 10.1002/j.1460-2075.1990.tb07471.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Luckow B., Schütz G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 1987 Jul 10;15(13):5490–5490. doi: 10.1093/nar/15.13.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Masquilier D., Sassone-Corsi P. Transcriptional cross-talk: nuclear factors CREM and CREB bind to AP-1 sites and inhibit activation by Jun. J Biol Chem. 1992 Nov 5;267(31):22460–22466. [PubMed] [Google Scholar]
  47. Matrisian L. M., Rautmann G., Magun B. E., Breathnach R. Epidermal growth factor or serum stimulation of rat fibroblasts induces an elevation in mRNA levels for lactate dehydrogenase and other glycolytic enzymes. Nucleic Acids Res. 1985 Feb 11;13(3):711–726. doi: 10.1093/nar/13.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Nakagawa J., von der Ahe D., Pearson D., Hemmings B. A., Shibahara S., Nagamine Y. Transcriptional regulation of a plasminogen activator gene by cyclic AMP in a homologous cell-free system. Involvement of cyclic AMP-dependent protein kinase in transcriptional control. J Biol Chem. 1988 Feb 15;263(5):2460–2468. [PubMed] [Google Scholar]
  49. Nigg E. A., Hilz H., Eppenberger H. M., Dutly F. Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus. EMBO J. 1985 Nov;4(11):2801–2806. doi: 10.1002/j.1460-2075.1985.tb04006.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Quinn P. G., Wong T. W., Magnuson M. A., Shabb J. B., Granner D. K. Identification of basal and cyclic AMP regulatory elements in the promoter of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol. 1988 Aug;8(8):3467–3475. doi: 10.1128/mcb.8.8.3467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ransone L. J., Wamsley P., Morley K. L., Verma I. M. Domain swapping reveals the modular nature of Fos, Jun, and CREB proteins. Mol Cell Biol. 1990 Sep;10(9):4565–4573. doi: 10.1128/mcb.10.9.4565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rauscher F. J., 3rd, Voulalas P. J., Franza B. R., Jr, Curran T. Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. Genes Dev. 1988 Dec;2(12B):1687–1699. doi: 10.1101/gad.2.12b.1687. [DOI] [PubMed] [Google Scholar]
  53. Renkawitz R. Transcriptional repression in eukaryotes. Trends Genet. 1990 Jun;6(6):192–197. doi: 10.1016/0168-9525(90)90176-7. [DOI] [PubMed] [Google Scholar]
  54. Richards A. H., Hilf R. Effect of estrogen administration on glucose 6-phosphate dehydrogenase and lactate dehydrogenase isoenzymes in rodent mammary tumors and normal mammary glands. Cancer Res. 1972 Mar;32(3):611–616. [PubMed] [Google Scholar]
  55. Roesler W. J., Vandenbark G. R., Hanson R. W. Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem. 1988 Jul 5;263(19):9063–9066. [PubMed] [Google Scholar]
  56. Sassone-Corsi P., Fromental C., Chambon P. A trans-acting factor represses the activity of the polyoma virus enhancer in undifferentiated embryonal carcinoma cells. Oncogene Res. 1987 Jul;1(2):113–119. [PubMed] [Google Scholar]
  57. Sassone-Corsi P., Ransone L. J., Verma I. M. Cross-talk in signal transduction: TPA-inducible factor jun/AP-1 activates cAMP-responsive enhancer elements. Oncogene. 1990 Mar;5(3):427–431. [PubMed] [Google Scholar]
  58. Shaw P. E., Frasch S., Nordheim A. Repression of c-fos transcription is mediated through p67SRF bound to the SRE. EMBO J. 1989 Sep;8(9):2567–2574. doi: 10.1002/j.1460-2075.1989.tb08395.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Shinomiya T., Scherer G., Schmid W., Zentgraf H., Schütz G. Isolation and characterization of the rat tyrosine aminotransferase gene. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1346–1350. doi: 10.1073/pnas.81.5.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Short M. L., Huang D., Milkowski D. M., Short S., Kunstman K., Soong C. J., Chung K. C., Jungmann R. A. Analysis of the rat lactate dehydrogenase A subunit gene promoter/regulatory region. Biochem J. 1994 Dec 1;304(Pt 2):391–398. doi: 10.1042/bj3040391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Short M. L., Manohar C. F., Furtado M. R., Ghadge G. D., Wolinsky S. M., Thimmapaya B., Jungmann R. A. Nucleotide and derived amino-acid sequences of the CRE-binding proteins from rat C6 glioma and HeLa cells. Nucleic Acids Res. 1991 Aug 11;19(15):4290–4290. doi: 10.1093/nar/19.15.4290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Short S., Short M. L., Milkowski D. M., Jungmann R. A. Functional analysis of cis- and trans-regulatory elements of the lactate dehydrogenase A subunit promoter by in vitro transcription. J Biol Chem. 1991 Nov 25;266(33):22164–22172. [PubMed] [Google Scholar]
  63. Takimoto M., Quinn J. P., Farina A. R., Staudt L. M., Levens D. fos/jun and octamer-binding protein interact with a common site in a negative element of the human c-myc gene. J Biol Chem. 1989 May 25;264(15):8992–8999. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES