Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Nov;15(11):6246–6255. doi: 10.1128/mcb.15.11.6246

Adenovirus type 12-induced fragility of the human RNU2 locus requires U2 small nuclear RNA transcriptional regulatory elements.

A D Bailey 1, Z Li 1, T Pavelitz 1, A M Weiner 1
PMCID: PMC230876  PMID: 7565777

Abstract

Infection of human cells with oncogenic adenovirus type 12 (Ad12) induces four specific chromosome fragile sites. Remarkably, three of these sites appear to colocalize with tandem arrays of genes encoding small, abundant, ubiquitously expressed structural RNAs--the RNU1 locus encoding U1 small nuclear RNA (snRNA), the RNU2 locus encoding U2 snRNA, and the RN5S locus encoding 5S rRNA. Recently, an artificial tandem array of the natural 5.8-kb U2 repeat unit has been shown to generate a new Ad12-inducible fragile site (Y.-P. Li, R. Tomanin, J. R. Smiley, and S. Bacchetti, Mol. Cell. Biol. 13:6064-6070, 1993), demonstrating that the U2 repeat unit alone is sufficient for virally induced fragility. To identify elements within the U2 repeat unit that are required for virally induced fragility, we generated cell lines containing artificial tandem arrays of the entire 5.8-kb repeat unit, an 834-bp fragment spanning the U2 gene alone, or the same 834-bp fragment from which key U2 transcriptional regulatory elements had been deleted. The U2 snRNA coding regions within each artificial array were marked by an innocuous single base change (U to C at position 87) so that the relative expression of supernumerary and endogenous U2 genes could be monitored by a primer extension assay. We find that artificial arrays of both the 5.8- and the 0.8-kb U2 repeat units are fragile but that arrays lacking either the distal sequence element or both the distal and the proximal sequence elements of the promoter are not. Surprisingly, variations in repeat copy number and/or transcriptional activity of the artificial arrays do not appear to correlate with the degree of Ad12-inducible fragility. We conclude that U2 transcriptional regulatory elements are required for virally induced fragility but not necessarily U2 snRNA transcription per se.

Full Text

The Full Text of this article is available as a PDF (623.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ach R. A., Weiner A. M. The highly conserved U small nuclear RNA 3'-end formation signal is quite tolerant to mutation. Mol Cell Biol. 1987 Jun;7(6):2070–2079. doi: 10.1128/mcb.7.6.2070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ares M., Jr, Chung J. S., Giglio L., Weiner A. M. Distinct factors with Sp1 and NF-A specificities bind to adjacent functional elements of the human U2 snRNA gene enhancer. Genes Dev. 1987 Oct;1(8):808–817. doi: 10.1101/gad.1.8.808. [DOI] [PubMed] [Google Scholar]
  3. Ares M., Jr, Mangin M., Weiner A. M. Orientation-dependent transcriptional activator upstream of a human U2 snRNA gene. Mol Cell Biol. 1985 Jul;5(7):1560–1570. doi: 10.1128/mcb.5.7.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ballard S. G., Ward D. C. Fluorescence in situ hybridization using digital imaging microscopy. J Histochem Cytochem. 1993 Dec;41(12):1755–1759. doi: 10.1177/41.12.8245423. [DOI] [PubMed] [Google Scholar]
  5. Bloomfield V. A. Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers. 1991 Nov;31(13):1471–1481. doi: 10.1002/bip.360311305. [DOI] [PubMed] [Google Scholar]
  6. Caporossi D., Bacchetti S., Nicoletti B. Synergism between aphidicolin and adenoviruses in the induction of breaks at fragile sites on human chromosomes. Cancer Genet Cytogenet. 1991 Jul 1;54(1):39–53. doi: 10.1016/0165-4608(91)90028-s. [DOI] [PubMed] [Google Scholar]
  7. Card C. O., Morris G. F., Brown D. T., Marzluff W. F. Sea urchin small nuclear RNA genes are organized in distinct tandemly repeating units. Nucleic Acids Res. 1982 Dec 11;10(23):7677–7688. doi: 10.1093/nar/10.23.7677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chung J. H., Whiteley M., Felsenfeld G. A 5' element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell. 1993 Aug 13;74(3):505–514. doi: 10.1016/0092-8674(93)80052-g. [DOI] [PubMed] [Google Scholar]
  9. Drapkin R., Reardon J. T., Ansari A., Huang J. C., Zawel L., Ahn K., Sancar A., Reinberg D. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature. 1994 Apr 21;368(6473):769–772. doi: 10.1038/368769a0. [DOI] [PubMed] [Google Scholar]
  10. Durnam D. M., Menninger J. C., Chandler S. H., Smith P. P., McDougall J. K. A fragile site in the human U2 small nuclear RNA gene cluster is revealed by adenovirus type 12 infection. Mol Cell Biol. 1988 May;8(5):1863–1867. doi: 10.1128/mcb.8.5.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Favre D. Improved phenol-based method for the isolation of DNA fragments from low melting temperature agarose gels. Biotechniques. 1992 Jul;13(1):22, 25-26. [PubMed] [Google Scholar]
  12. Gargano S., Wang P., Rusanganwa E., Bacchetti S. The transcriptionally competent U2 gene is necessary and sufficient for adenovirus type 12 induction of the fragile site at 17q21-22. Mol Cell Biol. 1995 Nov;15(11):6256–6261. doi: 10.1128/mcb.15.11.6256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hammarström K., Santesson B., Westin G., Pettersson U. The gene cluster for human U2 RNA is located on chromosome 17q21. Exp Cell Res. 1985 Aug;159(2):473–478. doi: 10.1016/s0014-4827(85)80020-3. [DOI] [PubMed] [Google Scholar]
  14. Hanawalt P. C. Transcription-coupled repair and human disease. Science. 1994 Dec 23;266(5193):1957–1958. doi: 10.1126/science.7801121. [DOI] [PubMed] [Google Scholar]
  15. Hansen R. S., Canfield T. K., Lamb M. M., Gartler S. M., Laird C. D. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell. 1993 Jul 2;73(7):1403–1409. doi: 10.1016/0092-8674(93)90365-w. [DOI] [PubMed] [Google Scholar]
  16. Knight S. J., Flannery A. V., Hirst M. C., Campbell L., Christodoulou Z., Phelps S. R., Pointon J., Middleton-Price H. R., Barnicoat A., Pembrey M. E. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell. 1993 Jul 16;74(1):127–134. doi: 10.1016/0092-8674(93)90300-f. [DOI] [PubMed] [Google Scholar]
  17. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leung H., Maizels N. Regulation and targeting of recombination in extrachromosomal substrates carrying immunoglobulin switch region sequences. Mol Cell Biol. 1994 Feb;14(2):1450–1458. doi: 10.1128/mcb.14.2.1450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li Y. P., Tomanin R., Smiley J. R., Bacchetti S. Generation of a new adenovirus type 12-inducible fragile site by insertion of an artificial U2 locus in the human genome. Mol Cell Biol. 1993 Oct;13(10):6064–6070. doi: 10.1128/mcb.13.10.6064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lindgren V., Ares M., Jr, Weiner A. M., Francke U. Human genes for U2 small nuclear RNA map to a major adenovirus 12 modification site on chromosome 17. Nature. 1985 Mar 7;314(6006):115–116. doi: 10.1038/314115a0. [DOI] [PubMed] [Google Scholar]
  21. Lindgren V., Bernstein L. B., Weiner A. M., Francke U. Human U1 small nuclear RNA pseudogenes do not map to the site of the U1 genes in 1p36 but are clustered in 1q12-q22. Mol Cell Biol. 1985 Sep;5(9):2172–2180. doi: 10.1128/mcb.5.9.2172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lund E., Dahlberg J. E. Control of 4-8S RNA transcription at the midblastula transition in Xenopus laevis embryos. Genes Dev. 1992 Jun;6(6):1097–1106. doi: 10.1101/gad.6.6.1097. [DOI] [PubMed] [Google Scholar]
  23. Lund E. Heterogeneity of human U1 snRNAs. Nucleic Acids Res. 1988 Jul 11;16(13):5813–5826. doi: 10.1093/nar/16.13.5813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mangin M., Ares M., Jr, Weiner A. M. Human U2 small nuclear RNA genes contain an upstream enhancer. EMBO J. 1986 May;5(5):987–995. doi: 10.1002/j.1460-2075.1986.tb04313.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mangin M., Ares M., Jr, Weiner A. M. U1 small nuclear RNA genes are subject to dosage compensation in mouse cells. Science. 1985 Jul 19;229(4710):272–275. doi: 10.1126/science.2409601. [DOI] [PubMed] [Google Scholar]
  26. Mather M. W. Base composition-independent hybridization in dried agarose gels: screening and recovery for cloning of genomic DNA fragments. Biotechniques. 1988 May;6(5):444–447. [PubMed] [Google Scholar]
  27. Mattaj I. W., Zeller R. Xenopus laevis U2 snRNA genes: tandemly repeated transcription units sharing 5' and 3' flanking homology with other RNA polymerase II transcribed genes. EMBO J. 1983;2(11):1883–1891. doi: 10.1002/j.1460-2075.1983.tb01675.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McDougall J. K., Dunn A. R., Jones K. W. In situ hybridization of adenovirus RNA and DNA. Nature. 1972 Apr 14;236(5346):346–348. doi: 10.1038/236346a0. [DOI] [PubMed] [Google Scholar]
  29. McDougall J. K. Effects of adenoviruses on the chromosomes of normal human cells and cells trisomic for an E chromosome. Nature. 1970 Jan 31;225(5231):456–458. doi: 10.1038/225456a0. [DOI] [PubMed] [Google Scholar]
  30. McDougall J. K. Spontaneous and adenovirus type 12-induced chromosome aberrations in Fanconi's anaemia fibroblasts. Int J Cancer. 1971 May 15;7(3):526–534. doi: 10.1002/ijc.2910070319. [DOI] [PubMed] [Google Scholar]
  31. Miró R., Clemente I. C., Fuster C., Egozcue J. Fragile sites, chromosome evolution, and human neoplasia. Hum Genet. 1987 Apr;75(4):345–349. doi: 10.1007/BF00284105. [DOI] [PubMed] [Google Scholar]
  32. Nancarrow J. K., Kremer E., Holman K., Eyre H., Doggett N. A., Le Paslier D., Callen D. F., Sutherland G. R., Richards R. I. Implications of FRA16A structure for the mechanism of chromosomal fragile site genesis. Science. 1994 Jun 24;264(5167):1938–1941. doi: 10.1126/science.8009225. [DOI] [PubMed] [Google Scholar]
  33. Naylor S. L., Zabel B. U., Manser T., Gesteland R., Sakaguchi A. Y. Localization of human U1 small nuclear RNA genes to band p36.3 of chromosome 1 by in situ hybridization. Somat Cell Mol Genet. 1984 May;10(3):307–313. doi: 10.1007/BF01535252. [DOI] [PubMed] [Google Scholar]
  34. Paranjape S. M., Kamakaka R. T., Kadonaga J. T. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem. 1994;63:265–297. doi: 10.1146/annurev.bi.63.070194.001405. [DOI] [PubMed] [Google Scholar]
  35. Pavelitz T., Rusché L., Matera A. G., Scharf J. M., Weiner A. M. Concerted evolution of the tandem array encoding primate U2 snRNA occurs in situ, without changing the cytological context of the RNU2 locus. EMBO J. 1995 Jan 3;14(1):169–177. doi: 10.1002/j.1460-2075.1995.tb06987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pirrotta V., Rastelli L. White gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila. Bioessays. 1994 Aug;16(8):549–556. doi: 10.1002/bies.950160808. [DOI] [PubMed] [Google Scholar]
  37. Romani M., Baldini A., Volpi E. V., Casciano I., Nobile C., Muresu R., Siniscalco M. Concurrent mapping of an adenovirus 5/SV40 integration site and the U1 snRNA cluster (RNU1) within 400 kb of the chromosome region 1p36.1. Cytogenet Cell Genet. 1994;67(1):37–40. doi: 10.1159/000133793. [DOI] [PubMed] [Google Scholar]
  38. Sadowski C. L., Henry R. W., Lobo S. M., Hernandez N. Targeting TBP to a non-TATA box cis-regulatory element: a TBP-containing complex activates transcription from snRNA promoters through the PSE. Genes Dev. 1993 Aug;7(8):1535–1548. doi: 10.1101/gad.7.8.1535. [DOI] [PubMed] [Google Scholar]
  39. Schramayr S., Caporossi D., Mak I., Jelinek T., Bacchetti S. Chromosomal damage induced by human adenovirus type 12 requires expression of the E1B 55-kilodalton viral protein. J Virol. 1990 May;64(5):2090–2095. doi: 10.1128/jvi.64.5.2090-2095.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Segil N., Roberts S. B., Heintz N. Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science. 1991 Dec 20;254(5039):1814–1816. doi: 10.1126/science.1684878. [DOI] [PubMed] [Google Scholar]
  41. Simonsen C. C., Levinson A. D. Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc Natl Acad Sci U S A. 1983 May;80(9):2495–2499. doi: 10.1073/pnas.80.9.2495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Skuzeski J. M., Lund E., Murphy J. T., Steinberg T. H., Burgess R. R., Dahlberg J. E. Synthesis of human U1 RNA. II. Identification of two regions of the promoter essential for transcription initiation at position +1. J Biol Chem. 1984 Jul 10;259(13):8345–8352. [PubMed] [Google Scholar]
  43. Smeets D. F., van de Klundert F. A. Common fragile sites in man and three closely related primate species. Cytogenet Cell Genet. 1990;53(1):8–14. doi: 10.1159/000132885. [DOI] [PubMed] [Google Scholar]
  44. Smith P. P., Friedman C. L., Bryant E. M., McDougall J. K. Viral integration and fragile sites in human papillomavirus-immortalized human keratinocyte cell lines. Genes Chromosomes Cancer. 1992 Sep;5(2):150–157. doi: 10.1002/gcc.2870050209. [DOI] [PubMed] [Google Scholar]
  45. Steffensen D. M., Szabo P., McDougall J. K. Adenovirus 12 uncoiler regions of human chromosome 1 in relation to the 5S rRNA genes. Exp Cell Res. 1976 Jul;100(2):436–439. doi: 10.1016/0014-4827(76)90176-2. [DOI] [PubMed] [Google Scholar]
  46. Sørensen P. D., Lomholt B., Frederiksen S., Tommerup N. Fine mapping of human 5S rRNA genes to chromosome 1q42.11----q42.13. Cytogenet Cell Genet. 1991;57(1):26–29. doi: 10.1159/000133107. [DOI] [PubMed] [Google Scholar]
  47. Van Arsdell S. W., Weiner A. M. Human genes for U2 small nuclear RNA are tandemly repeated. Mol Cell Biol. 1984 Mar;4(3):492–499. doi: 10.1128/mcb.4.3.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Van Arsdell S. W., Weiner A. M. Pseudogenes for human U2 small nuclear RNA do not have a fixed site of 3' truncation. Nucleic Acids Res. 1984 Feb 10;12(3):1463–1471. doi: 10.1093/nar/12.3.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vazquez J., Schedl P. Sequences required for enhancer blocking activity of scs are located within two nuclease-hypersensitive regions. EMBO J. 1994 Dec 15;13(24):5984–5993. doi: 10.1002/j.1460-2075.1994.tb06944.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Westin G., Zabielski J., Hammarström K., Monstein H. J., Bark C., Pettersson U. Clustered genes for human U2 RNA. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3811–3815. doi: 10.1073/pnas.81.12.3811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. White R. J., Gottlieb T. M., Downes C. S., Jackson S. P. Mitotic regulation of a TATA-binding-protein-containing complex. Mol Cell Biol. 1995 Apr;15(4):1983–1992. doi: 10.1128/mcb.15.4.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Withers-Ward E. S., Kitamura Y., Barnes J. P., Coffin J. M. Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev. 1994 Jun 15;8(12):1473–1487. doi: 10.1101/gad.8.12.1473. [DOI] [PubMed] [Google Scholar]
  53. Wu T. C., Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science. 1994 Jan 28;263(5146):515–518. doi: 10.1126/science.8290959. [DOI] [PubMed] [Google Scholar]
  54. Yunis J. J., Hoffman W. R. Nuclear enzymes, fragile sites, and cancer. J Gerontol. 1989 Nov;44(6):37–44. doi: 10.1093/geronj/44.6.37. [DOI] [PubMed] [Google Scholar]
  55. Yunis J. J., Soreng A. L. Constitutive fragile sites and cancer. Science. 1984 Dec 7;226(4679):1199–1204. doi: 10.1126/science.6239375. [DOI] [PubMed] [Google Scholar]
  56. Zavanelli M. I., Britton J. S., Igel A. H., Ares M., Jr Mutations in an essential U2 small nuclear RNA structure cause cold-sensitive U2 small nuclear ribonucleoprotein function by favoring competing alternative U2 RNA structures. Mol Cell Biol. 1994 Mar;14(3):1689–1697. doi: 10.1128/mcb.14.3.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zhuang Y., Weiner A. M. A compensatory base change in human U2 snRNA can suppress a branch site mutation. Genes Dev. 1989 Oct;3(10):1545–1552. doi: 10.1101/gad.3.10.1545. [DOI] [PubMed] [Google Scholar]
  58. Zur Hausen H. Induction of specific chromosomal aberrations by adenovirus type 12 in human embryonic kidney cells. J Virol. 1967 Dec;1(6):1174–1185. doi: 10.1128/jvi.1.6.1174-1185.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zwerschke W., Rottjakob H. W., Küntzel H. The Saccharomyces cerevisiae CDC6 gene is transcribed at late mitosis and encodes a ATP/GTPase controlling S phase initiation. J Biol Chem. 1994 Sep 16;269(37):23351–23356. [PubMed] [Google Scholar]
  60. van der Drift P., Chan A., van Roy N., Laureys G., Westerveld A., Speleman F., Versteeg R. A multimegabase cluster of snRNA and tRNA genes on chromosome 1p36 harbours an adenovirus/SV40 hybrid virus integration site. Hum Mol Genet. 1994 Dec;3(12):2131–2136. doi: 10.1093/hmg/3.12.2131. [DOI] [PubMed] [Google Scholar]
  61. von Knebel Doeberitz M., Bauknecht T., Bartsch D., zur Hausen H. Influence of chromosomal integration on glucocorticoid-regulated transcription of growth-stimulating papillomavirus genes E6 and E7 in cervical carcinoma cells. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1411–1415. doi: 10.1073/pnas.88.4.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES