Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Dec;15(12):6593–6600. doi: 10.1128/mcb.15.12.6593

Context effects on misreading and suppression at UAG codons in human cells.

M K Phillips-Jones 1, L S Hill 1, J Atkinson 1, R Martin 1
PMCID: PMC230912  PMID: 8524224

Abstract

The effect of the 3' codon context on the efficiency of nonsense suppression in mammalian tissue culture cells has been tested. Measurements were made following the transfection of cells with a pRSVgal reporter vector that contained the classical Escherichia coli lacZ UAG allele YA559. The position of this mutation was mapped by virtue of its fortuitous creation of a CTAG MaeI restriction enzyme site. Determination of the local DNA sequence revealed a C-->T mutation at codon 600 of the lacZ gene: CAG-->TAG. Site-directed mutagenesis was used to create a series of vectors in which the base 3' to the nonsense codon was either A, C, G, or U. Suppression of the amber-containing reporter was achieved by cotransfection with genes for human tRNA(Ser) or tRNA(Gln) UAG nonsense suppressors and by growth in the translational error-promoting aminoglycoside drug G418. Nonsense suppression was studied in the human cell lines 293 and MRC5V1 and the simian line COS-7. Overall, the rank order for the effect of changes to the base 3' to UAG was C < G = U < A. This study confirms and extends earlier findings that in mammalian cells 3' C supports efficient nonsense suppression while 3' A is unsympathetic for read-through at nonsense codons. The rules for the mammalian codon context effect on nonsense suppression are therefore demonstrably different from those in E. coli.

Full Text

The Full Text of this article is available as a PDF (274.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson J., Martin R. Mutations to nonsense codons in human genetic disease: implications for gene therapy by nonsense suppressor tRNAs. Nucleic Acids Res. 1994 Apr 25;22(8):1327–1334. doi: 10.1093/nar/22.8.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bain J. D., Diala E. S., Glabe C. G., Wacker D. A., Lyttle M. H., Dix T. A., Chamberlin A. R. Site-specific incorporation of nonnatural residues during in vitro protein biosynthesis with semisynthetic aminoacyl-tRNAs. Biochemistry. 1991 Jun 4;30(22):5411–5421. doi: 10.1021/bi00236a013. [DOI] [PubMed] [Google Scholar]
  3. Bain J. D., Switzer C., Chamberlin A. R., Benner S. A. Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature. 1992 Apr 9;356(6369):537–539. doi: 10.1038/356537a0. [DOI] [PubMed] [Google Scholar]
  4. Baserga S. J., Benz E. J., Jr Beta-globin nonsense mutation: deficient accumulation of mRNA occurs despite normal cytoplasmic stability. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2935–2939. doi: 10.1073/pnas.89.7.2935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belgrader P., Cheng J., Maquat L. E. Evidence to implicate translation by ribosomes in the mechanism by which nonsense codons reduce the nuclear level of human triosephosphate isomerase mRNA. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):482–486. doi: 10.1073/pnas.90.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berteaux V., Rousset J. P., Cassan M. UAG readthrough is not increased in vivo by Moloney murine leukemia virus infection. Biochimie. 1991 Oct;73(10):1291–1293. doi: 10.1016/0300-9084(91)90091-e. [DOI] [PubMed] [Google Scholar]
  7. Björnsson A., Isaksson L. A. UGA codon context which spans three codons. Reversal by ms2i6A37 in tRNA, mutation in rpsD(S4) or streptomycin. J Mol Biol. 1993 Aug 20;232(4):1017–1029. doi: 10.1006/jmbi.1993.1457. [DOI] [PubMed] [Google Scholar]
  8. Bossi L. Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. J Mol Biol. 1983 Feb 15;164(1):73–87. doi: 10.1016/0022-2836(83)90088-8. [DOI] [PubMed] [Google Scholar]
  9. Buckingham R. H., Sörensen P., Pagel F. T., Hijazi K. A., Mims B. H., Brechemier-Baey D., Murgola E. J. Third position base changes in codons 5' and 3' adjacent UGA codons affect UGA suppression in vivo. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):259–262. doi: 10.1016/0167-4781(90)90177-4. [DOI] [PubMed] [Google Scholar]
  10. Burke J. F., Mogg A. E. Construction of a vector, pRSVcatamb38, for the rapid and sensitive assay of amber suppression in human and other mammalian cells. Nucleic Acids Res. 1985 Feb 25;13(4):1317–1326. doi: 10.1093/nar/13.4.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Burke J. F., Mogg A. E. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res. 1985 Sep 11;13(17):6265–6272. doi: 10.1093/nar/13.17.6265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Capone J. P., Sedivy J. M., Sharp P. A., RajBhandary U. L. Introduction of UAG, UAA, and UGA nonsense mutations at a specific site in the Escherichia coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cells. Mol Cell Biol. 1986 Sep;6(9):3059–3067. doi: 10.1128/mcb.6.9.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Capone J. P., Sharp P. A., RajBhandary U. L. Amber, ochre and opal suppressor tRNA genes derived from a human serine tRNA gene. EMBO J. 1985 Jan;4(1):213–221. doi: 10.1002/j.1460-2075.1985.tb02338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cassan M., Berteaux V., Angrand P. O., Rousset J. P. Expression vectors for quantitating in vivo translational ambiguity: their potential use to analyse frameshifting at the HIV gag-pol junction. Res Virol. 1990 Nov-Dec;141(6):597–610. doi: 10.1016/0923-2516(90)90033-F. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chattoraj D. K., Cordes K., Berman M. L., Das A. Mutagenesis and mutation transfer induced by ultraviolet light in plasmid-cloned DNA. Gene. 1984 Feb;27(2):213–222. doi: 10.1016/0378-1119(84)90142-2. [DOI] [PubMed] [Google Scholar]
  16. Cheng J., Maquat L. E. Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the half-life of cytoplasmic mRNA. Mol Cell Biol. 1993 Mar;13(3):1892–1902. doi: 10.1128/mcb.13.3.1892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cupples C. G., Miller J. H. Effects of amino acid substitutions at the active site in Escherichia coli beta-galactosidase. Genetics. 1988 Nov;120(3):637–644. doi: 10.1093/genetics/120.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Curran J. F., Yarus M. Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J Mol Biol. 1989 Sep 5;209(1):65–77. doi: 10.1016/0022-2836(89)90170-8. [DOI] [PubMed] [Google Scholar]
  19. Daar I. O., Maquat L. E. Premature translation termination mediates triosephosphate isomerase mRNA degradation. Mol Cell Biol. 1988 Feb;8(2):802–813. doi: 10.1128/mcb.8.2.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Drabkin H. J., RajBhandary U. L. Expression in vivo of a mutant human initiator tRNA gene in mammalian cells using a simian virus 40 vector. J Biol Chem. 1985 May 10;260(9):5588–5595. [PubMed] [Google Scholar]
  21. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
  22. Gorini L. Informational suppression. Annu Rev Genet. 1970;4:107–134. doi: 10.1146/annurev.ge.04.120170.000543. [DOI] [PubMed] [Google Scholar]
  23. Graham F. L., Smiley J., Russell W. C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  24. Hall C. V., Jacob P. E., Ringold G. M., Lee F. Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J Mol Appl Genet. 1983;2(1):101–109. [PubMed] [Google Scholar]
  25. Ho Y. S., Kan Y. W. In vivo aminoacylation of human and Xenopus suppressor tRNAs constructed by site-specific mutagenesis. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2185–2188. doi: 10.1073/pnas.84.8.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Huschtscha L. I., Holliday R. Limited and unlimited growth of SV40-transformed cells from human diploid MRC-5 fibroblasts. J Cell Sci. 1983 Sep;63:77–99. doi: 10.1242/jcs.63.1.77. [DOI] [PubMed] [Google Scholar]
  27. Jacobson R. H., Zhang X. J., DuBose R. F., Matthews B. W. Three-dimensional structure of beta-galactosidase from E. coli. Nature. 1994 Jun 30;369(6483):761–766. doi: 10.1038/369761a0. [DOI] [PubMed] [Google Scholar]
  28. Kalnins A., Otto K., Rüther U., Müller-Hill B. Sequence of the lacZ gene of Escherichia coli. EMBO J. 1983;2(4):593–597. doi: 10.1002/j.1460-2075.1983.tb01468.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Li G., Rice C. M. The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. J Virol. 1993 Aug;67(8):5062–5067. doi: 10.1128/jvi.67.8.5062-5067.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ma C., Kudlicki W., Odom O. W., Kramer G., Hardesty B. In vitro protein engineering using synthetic tRNA(Ala) with different anticodons. Biochemistry. 1993 Aug 10;32(31):7939–7945. doi: 10.1021/bi00082a015. [DOI] [PubMed] [Google Scholar]
  31. Martin R., Mogg A. E., Heywood L. A., Nitschke L., Burke J. F. Aminoglycoside suppression at UAG, UAA and UGA codons in Escherichia coli and human tissue culture cells. Mol Gen Genet. 1989 Jun;217(2-3):411–418. doi: 10.1007/BF02464911. [DOI] [PubMed] [Google Scholar]
  32. Martin R. On the relationship between preferred termination codon contexts and nonsense suppression in human cells. Nucleic Acids Res. 1994 Jan 11;22(1):15–19. doi: 10.1093/nar/22.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Martin R., Phillips-Jones M. K., Watson F. J., Hill L. S. Codon context effects on nonsense suppression in human cells. Biochem Soc Trans. 1993 Nov;21(4):846–851. doi: 10.1042/bst0210846. [DOI] [PubMed] [Google Scholar]
  34. Miller J. H., Albertini A. M. Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol. 1983 Feb 15;164(1):59–71. doi: 10.1016/0022-2836(83)90087-6. [DOI] [PubMed] [Google Scholar]
  35. Newton W. A., Beckwith J. R., Zipser D., Brenner S. Nonsense mutants and polarity in the lac operon of Escherichia coli. J Mol Biol. 1965 Nov;14(1):290–296. doi: 10.1016/s0022-2836(65)80250-9. [DOI] [PubMed] [Google Scholar]
  36. Pedersen W. T., Curran J. F. Effects of the nucleotide 3' to an amber codon on ribosomal selection rates of suppressor tRNA and release factor-1. J Mol Biol. 1991 May 20;219(2):231–241. doi: 10.1016/0022-2836(91)90564-m. [DOI] [PubMed] [Google Scholar]
  37. Phillips-Jones M. K., Watson F. J., Martin R. The 3' codon context effect on UAG suppressor tRNA is different in Escherichia coli and human cells. J Mol Biol. 1993 Sep 5;233(1):1–6. doi: 10.1006/jmbi.1993.1479. [DOI] [PubMed] [Google Scholar]
  38. Rowland G. C., Lim P. P., Glass R. E. 'Stop-codon-specific' restriction endonucleases: their use in mapping and gene manipulation. Gene. 1992 Jul 1;116(1):21–26. doi: 10.1016/0378-1119(92)90624-x. [DOI] [PubMed] [Google Scholar]
  39. Sedivy J. M., Capone J. P., RajBhandary U. L., Sharp P. A. An inducible mammalian amber suppressor: propagation of a poliovirus mutant. Cell. 1987 Jul 31;50(3):379–389. doi: 10.1016/0092-8674(87)90492-2. [DOI] [PubMed] [Google Scholar]
  40. Smith D., Yarus M. Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome. J Mol Biol. 1989 Apr 5;206(3):489–501. doi: 10.1016/0022-2836(89)90496-8. [DOI] [PubMed] [Google Scholar]
  41. Smith D., Yarus M. Transfer RNA structure and coding specificity. II. A D-arm tertiary interaction that restricts coding range. J Mol Biol. 1989 Apr 5;206(3):503–511. doi: 10.1016/0022-2836(89)90497-x. [DOI] [PubMed] [Google Scholar]
  42. Smith D., Yarus M. tRNA-tRNA interactions within cellular ribosomes. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4397–4401. doi: 10.1073/pnas.86.12.4397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stormo G. D., Schneider T. D., Gold L. Quantitative analysis of the relationship between nucleotide sequence and functional activity. Nucleic Acids Res. 1986 Aug 26;14(16):6661–6679. doi: 10.1093/nar/14.16.6661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tapio S., Isaksson L. A. Antisuppression by mutations in elongation factor Tu. Eur J Biochem. 1990 Mar 10;188(2):339–346. doi: 10.1111/j.1432-1033.1990.tb15409.x. [DOI] [PubMed] [Google Scholar]
  45. Tapping R. I., Syroid D. E., Bilan P. T., Capone J. P. The 5' flanking sequence negatively modulates the in vivo expression and in vitro transcription of a human tRNA gene. Nucleic Acids Res. 1993 Sep 25;21(19):4476–4482. doi: 10.1093/nar/21.19.4476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yarus M., Cline S. W., Wier P., Breeden L., Thompson R. C. Actions of the anticodon arm in translation on the phenotypes of RNA mutants. J Mol Biol. 1986 Nov 20;192(2):235–255. doi: 10.1016/0022-2836(86)90362-1. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES