Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Dec;15(12):6632–6640. doi: 10.1128/mcb.15.12.6632

Requirement of the self-glucosylating initiator proteins Glg1p and Glg2p for glycogen accumulation in Saccharomyces cerevisiae.

C Cheng 1, J Mu 1, I Farkas 1, D Huang 1, M G Goebl 1, P J Roach 1
PMCID: PMC230916  PMID: 8524228

Abstract

Glycogen, a branched polymer of glucose, is a storage molecule whose accumulation is under rigorous nutritional control in many cells. We report the identification of two Saccharomyces cerevisiae genes, GLG1 and GLG2, whose products are implicated in the biogenesis of glycogen. These genes encode self-glucosylating proteins that in vitro can act as primers for the elongation reaction catalyzed by glycogen synthase. Over a region of 258 residues, the Glg proteins have 55% sequence identify to each other and approximately 33% identity to glycogenin, a mammalian protein postulated to have a role in the initiation of glycogen biosynthesis. Yeast cells defective in either GLG1 or GLG2 are similar to the wild type in their ability to accumulate glycogen. Disruption of both genes results in the inability of the cells to synthesize glycogen despite normal levels of glycogen synthase. These results suggest that a self-glucosylating protein is required for glycogen biosynthesis in a eukaryotic cell. The activation state of glycogen synthase in glg1 glg2 cells is suppressed, suggesting that the Glg proteins may additionally influence the phosphorylation state of glycogen synthase.

Full Text

The Full Text of this article is available as a PDF (448.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad Z., Lee F. T., DePaoli-Roach A. A., Roach P. J. Heparin-activated protein kinase from rabbit muscle: relationship to enzymes of the glycogen synthase kinase-3 category. Arch Biochem Biophys. 1986 Nov 1;250(2):329–335. doi: 10.1016/0003-9861(86)90734-4. [DOI] [PubMed] [Google Scholar]
  2. Barengo R., Flawia M., Krisman C. R. The initiation of glycogen biosynthesis in Escherichia coli. FEBS Lett. 1975 May 15;53(3):274–278. doi: 10.1016/0014-5793(75)80035-4. [DOI] [PubMed] [Google Scholar]
  3. Benning C., Somerville C. R. Identification of an operon involved in sulfolipid biosynthesis in Rhodobacter sphaeroides. J Bacteriol. 1992 Oct;174(20):6479–6487. doi: 10.1128/jb.174.20.6479-6487.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Cannon J. F., Gibbs J. B., Tatchell K. Suppressors of the ras2 mutation of Saccharomyces cerevisiae. Genetics. 1986 Jun;113(2):247–264. doi: 10.1093/genetics/113.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cannon J. F., Pringle J. R., Fiechter A., Khalil M. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics. 1994 Feb;136(2):485–503. doi: 10.1093/genetics/136.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cao Y., Mahrenholz A. M., DePaoli-Roach A. A., Roach P. J. Characterization of rabbit skeletal muscle glycogenin. Tyrosine 194 is essential for function. J Biol Chem. 1993 Jul 15;268(20):14687–14693. [PubMed] [Google Scholar]
  8. Cao Y., Steinrauf L. K., Roach P. J. Mechanism of glycogenin self-glucosylation. Arch Biochem Biophys. 1995 May 10;319(1):293–298. doi: 10.1006/abbi.1995.1295. [DOI] [PubMed] [Google Scholar]
  9. Chevray P. M., Nathans D. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5789–5793. doi: 10.1073/pnas.89.13.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chien C. T., Bartel P. L., Sternglanz R., Fields S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9578–9582. doi: 10.1073/pnas.88.21.9578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Choi K. Y., Satterberg B., Lyons D. M., Elion E. A. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell. 1994 Aug 12;78(3):499–512. doi: 10.1016/0092-8674(94)90427-8. [DOI] [PubMed] [Google Scholar]
  12. Dujon B., Alexandraki D., André B., Ansorge W., Baladron V., Ballesta J. P., Banrevi A., Bolle P. A., Bolotin-Fukuhara M., Bossier P. Complete DNA sequence of yeast chromosome XI. Nature. 1994 Jun 2;369(6479):371–378. doi: 10.1038/369371a0. [DOI] [PubMed] [Google Scholar]
  13. Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., Lee W. H., Elledge S. J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993 Apr;7(4):555–569. doi: 10.1101/gad.7.4.555. [DOI] [PubMed] [Google Scholar]
  14. Farkas I., Hardy T. A., DePaoli-Roach A. A., Roach P. J. Isolation of the GSY1 gene encoding yeast glycogen synthase and evidence for the existence of a second gene. J Biol Chem. 1990 Dec 5;265(34):20879–20886. [PubMed] [Google Scholar]
  15. Farkas I., Hardy T. A., Goebl M. G., Roach P. J. Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J Biol Chem. 1991 Aug 25;266(24):15602–15607. [PubMed] [Google Scholar]
  16. François J. M., Thompson-Jaeger S., Skroch J., Zellenka U., Spevak W., Tatchell K. GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J. 1992 Jan;11(1):87–96. doi: 10.1002/j.1460-2075.1992.tb05031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goldraij A., Miozzo M. C., Curtino J. A. Glycogen-bound protein in lower eukaryote and prokaryote. Biochem Mol Biol Int. 1993 Jul;30(3):453–460. [PubMed] [Google Scholar]
  18. Hadfield C., Cashmore A. M., Meacock P. A. An efficient chloramphenicol-resistance marker for Saccharomyces cerevisiae and Escherichia coli. Gene. 1986;45(2):149–158. doi: 10.1016/0378-1119(86)90249-0. [DOI] [PubMed] [Google Scholar]
  19. Hardy T. A., Huang D., Roach P. J. Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem. 1994 Nov 11;269(45):27907–27913. [PubMed] [Google Scholar]
  20. Hardy T. A., Roach P. J. Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation. J Biol Chem. 1993 Nov 15;268(32):23799–23805. [PubMed] [Google Scholar]
  21. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  24. Linder P., Slonimski P. P. Sequence of the genes TIF1 and TIF2 from Saccharomyces cerevisiae coding for a translation initiation factor. Nucleic Acids Res. 1988 Nov 11;16(21):10359–10359. doi: 10.1093/nar/16.21.10359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marcus S., Polverino A., Barr M., Wigler M. Complexes between STE5 and components of the pheromone-responsive mitogen-activated protein kinase module. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7762–7766. doi: 10.1073/pnas.91.16.7762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moreno S., Cardini C. E., Tandecarz J. S. Alpha-glucan synthesis on a protein primer. A reconstituted system for the formation of protein-bound alpha-glucan. Eur J Biochem. 1987 Feb 2;162(3):609–614. doi: 10.1111/j.1432-1033.1987.tb10682.x. [DOI] [PubMed] [Google Scholar]
  27. Olson M. V., Dutchik J. E., Graham M. Y., Brodeur G. M., Helms C., Frank M., MacCollin M., Scheinman R., Frank T. Random-clone strategy for genomic restriction mapping in yeast. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7826–7830. doi: 10.1073/pnas.83.20.7826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rivas L. A., Pont Lezica R. Synthesis of beta-glucans in Prototheca zopfii. Isolation and characterization of the glycoprotein primer. Eur J Biochem. 1987 Feb 16;163(1):135–140. doi: 10.1111/j.1432-1033.1987.tb10746.x. [DOI] [PubMed] [Google Scholar]
  29. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  30. Rowen D. W., Meinke M., LaPorte D. C. GLC3 and GHA1 of Saccharomyces cerevisiae are allelic and encode the glycogen branching enzyme. Mol Cell Biol. 1992 Jan;12(1):22–29. doi: 10.1128/mcb.12.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
  32. Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  33. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smythe C., Caudwell F. B., Ferguson M., Cohen P. Isolation and structural analysis of a peptide containing the novel tyrosyl-glucose linkage in glycogenin. EMBO J. 1988 Sep;7(9):2681–2686. doi: 10.1002/j.1460-2075.1988.tb03121.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Smythe C., Cohen P. The discovery of glycogenin and the priming mechanism for glycogen biogenesis. Eur J Biochem. 1991 Sep 15;200(3):625–631. doi: 10.1111/j.1432-1033.1991.tb16225.x. [DOI] [PubMed] [Google Scholar]
  36. Smythe C., Watt P., Cohen P. Further studies on the role of glycogenin in glycogen biosynthesis. Eur J Biochem. 1990 Apr 20;189(1):199–204. doi: 10.1111/j.1432-1033.1990.tb15477.x. [DOI] [PubMed] [Google Scholar]
  37. Takahara H., Matsuda K. Biosynthesis of glycogen in Neurospora crassa. Existence of a glucoproteic intermediate in the initiation process. J Biochem. 1977 Jun;81(6):1587–1594. doi: 10.1093/oxfordjournals.jbchem.a131617. [DOI] [PubMed] [Google Scholar]
  38. Tan A. W. A simplified method for the preparation of pure UDP[14C] glucose. Biochim Biophys Acta. 1979 Feb 1;582(3):543–547. doi: 10.1016/0304-4165(79)90146-6. [DOI] [PubMed] [Google Scholar]
  39. Thomas J. A., Schlender K. K., Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968 Oct 24;25(1):486–499. doi: 10.1016/0003-2697(68)90127-9. [DOI] [PubMed] [Google Scholar]
  40. Thon V. J., Vigneron-Lesens C., Marianne-Pepin T., Montreuil J., Decq A., Rachez C., Ball S. G., Cannon J. F. Coordinate regulation of glycogen metabolism in the yeast Saccharomyces cerevisiae. Induction of glycogen branching enzyme. J Biol Chem. 1992 Jul 25;267(21):15224–15228. [PubMed] [Google Scholar]
  41. Viskupic E., Cao Y., Zhang W., Cheng C., DePaoli-Roach A. A., Roach P. J. Rabbit skeletal muscle glycogenin. Molecular cloning and production of fully functional protein in Escherichia coli. J Biol Chem. 1992 Dec 25;267(36):25759–25763. [PubMed] [Google Scholar]
  42. Whelan W. J. The initiation of glycogen synthesis. Bioessays. 1986 Sep;5(3):136–140. doi: 10.1002/bies.950050312. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES