Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1995 Dec;15(12):6729–6735. doi: 10.1128/mcb.15.12.6729

RNA polymerase bypass at sites of dihydrouracil: implications for transcriptional mutagenesis.

J Liu 1, W Zhou 1, P W Doetsch 1
PMCID: PMC230926  PMID: 8524238

Abstract

Dihydrouracil (DHU) is a major base damage product formed from cytosine following exposure of DNA to ionizing radiation under anoxic conditions. To gain insight into the DNA lesion structural requirements for RNA polymerase arrest or bypass at various DNA damages located on the transcribed strand during elongation, DHU was placed onto promoter-containing DNA templates 20 nucleotides downstream from the transcription start site. In vitro, single-round transcription experiments carried out with SP6 and T7 RNA polymerases revealed that following a brief pause at the DHU site, both enzymes efficiently bypass this lesion with subsequent rapid generation of full-length runoff transcripts. Direct sequence analysis of these transcripts indicated that both RNA polymerases insert primarily adenine opposite to the DHU site, resulting in a G-to-A transition mutation in the lesion bypass product. Such bypass and insertion events at DHU sites (or other types of DNA damages), if they occur in vivo, have a number of important implications for both the repair of such lesions and the DNA damage-induced production of mutant proteins at the level of transcription (transcriptional mutagenesis).

Full Text

The Full Text of this article is available as a PDF (440.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohr V. A., Smith C. A., Okumoto D. S., Hanawalt P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985 Feb;40(2):359–369. doi: 10.1016/0092-8674(85)90150-3. [DOI] [PubMed] [Google Scholar]
  2. Bridges B. A. mutY 'directs' mutation? Nature. 1995 Jun 29;375(6534):741–741. doi: 10.1038/375741a0. [DOI] [PubMed] [Google Scholar]
  3. Chen Y. H., Bogenhagen D. F. Effects of DNA lesions on transcription elongation by T7 RNA polymerase. J Biol Chem. 1993 Mar 15;268(8):5849–5855. [PubMed] [Google Scholar]
  4. Choi D. J., Marino-Alessandri D. J., Geacintov N. E., Scicchitano D. A. Site-specific benzo[a]pyrene diol epoxide-DNA adducts inhibit transcription elongation by bacteriophage T7 RNA polymerase. Biochemistry. 1994 Jan 25;33(3):780–787. doi: 10.1021/bi00169a020. [DOI] [PubMed] [Google Scholar]
  5. Datta A., Jinks-Robertson S. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science. 1995 Jun 16;268(5217):1616–1619. doi: 10.1126/science.7777859. [DOI] [PubMed] [Google Scholar]
  6. Dizdaroglu M., Laval J., Boiteux S. Substrate specificity of the Escherichia coli endonuclease III: excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals. Biochemistry. 1993 Nov 16;32(45):12105–12111. doi: 10.1021/bi00096a022. [DOI] [PubMed] [Google Scholar]
  7. Doetsch P. W., Cunningham R. P. The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res. 1990 Sep-Nov;236(2-3):173–201. doi: 10.1016/0921-8777(90)90004-o. [DOI] [PubMed] [Google Scholar]
  8. Donahue B. A., Yin S., Taylor J. S., Reines D., Hanawalt P. C. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8502–8506. doi: 10.1073/pnas.91.18.8502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gewirtz D. A. DNA damage, gene expression, growth arrest and cell death. Oncol Res. 1993;5(10-11):397–408. [PubMed] [Google Scholar]
  10. Hanawalt P. C. Transcription-coupled repair and human disease. Science. 1994 Dec 23;266(5193):1957–1958. doi: 10.1126/science.7801121. [DOI] [PubMed] [Google Scholar]
  11. Hanawalt P., Mellon I. Stranded in an active gene. Curr Biol. 1993 Jan;3(1):67–69. doi: 10.1016/0960-9822(93)90156-i. [DOI] [PubMed] [Google Scholar]
  12. Jacques J. P., Kolakofsky D. Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes Dev. 1991 May;5(5):707–713. doi: 10.1101/gad.5.5.707. [DOI] [PubMed] [Google Scholar]
  13. Lindahl T., Nyberg B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry. 1974 Jul 30;13(16):3405–3410. doi: 10.1021/bi00713a035. [DOI] [PubMed] [Google Scholar]
  14. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  15. Mellon I., Hanawalt P. C. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature. 1989 Nov 2;342(6245):95–98. doi: 10.1038/342095a0. [DOI] [PubMed] [Google Scholar]
  16. Mellon I., Spivak G., Hanawalt P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell. 1987 Oct 23;51(2):241–249. doi: 10.1016/0092-8674(87)90151-6. [DOI] [PubMed] [Google Scholar]
  17. Miaskiewicz K., Miller J., Ornstein R., Osman R. Molecular dynamics simulations of the effects of ring-saturated thymine lesions on DNA structure. Biopolymers. 1995 Jan;35(1):113–124. doi: 10.1002/bip.360350112. [DOI] [PubMed] [Google Scholar]
  18. Méniel V., Brouwer J., Averbeck D. Evidence for preferential repair of 3-carbethoxypsoralen plus UVA induced DNA lesions in the active MAT alpha locus in Saccharomyces cerevisiae using the UvrABC assay. Mutagenesis. 1993 Sep;8(5):467–471. doi: 10.1093/mutage/8.5.467. [DOI] [PubMed] [Google Scholar]
  19. Sander E. G. The alkaline hydrolysis of the dihydropyrimidines. J Am Chem Soc. 1969 Jun 18;91(13):3629–3634. doi: 10.1021/ja01041a035. [DOI] [PubMed] [Google Scholar]
  20. Selby C. P., Sancar A. Gene- and strand-specific repair in vitro: partial purification of a transcription-repair coupling factor. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8232–8236. doi: 10.1073/pnas.88.18.8232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Selby C. P., Sancar A. Molecular mechanism of transcription-repair coupling. Science. 1993 Apr 2;260(5104):53–58. doi: 10.1126/science.8465200. [DOI] [PubMed] [Google Scholar]
  22. Selby C. P., Sancar A. Transcription preferentially inhibits nucleotide excision repair of the template DNA strand in vitro. J Biol Chem. 1990 Dec 5;265(34):21330–21336. [PubMed] [Google Scholar]
  23. Selby C. P., Witkin E. M., Sancar A. Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11574–11578. doi: 10.1073/pnas.88.24.11574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shapiro R., Klein R. S. The deamination of cytidine and cytosine by acidic buffer solutions. Mutagenic implications. Biochemistry. 1966 Jul;5(7):2358–2362. doi: 10.1021/bi00871a026. [DOI] [PubMed] [Google Scholar]
  25. Shi Y. B., Gamper H., Hearst J. E. Interaction of T7 RNA polymerase with DNA in an elongation complex arrested at a specific psoralen adduct site. J Biol Chem. 1988 Jan 5;263(1):527–534. [PubMed] [Google Scholar]
  26. Wada K., Wada Y., Ishibashi F., Gojobori T., Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 1992 May 11;20 (Suppl):2111–2118. doi: 10.1093/nar/20.suppl.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zhou W., Doetsch P. W. Effects of abasic sites and DNA single-strand breaks on prokaryotic RNA polymerases. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6601–6605. doi: 10.1073/pnas.90.14.6601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhou W., Doetsch P. W. Transcription bypass or blockage at single-strand breaks on the DNA template strand: effect of different 3' and 5' flanking groups on the T7 RNA polymerase elongation complex. Biochemistry. 1994 Dec 13;33(49):14926–14934. doi: 10.1021/bi00253a032. [DOI] [PubMed] [Google Scholar]
  29. Zhou W., Reines D., Doetsch P. W. T7 RNA polymerase bypass of large gaps on the template strand reveals a critical role of the nontemplate strand in elongation. Cell. 1995 Aug 25;82(4):577–585. doi: 10.1016/0092-8674(95)90030-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES