Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Jan;16(1):442–456. doi: 10.1128/mcb.16.1.442

Glucose-induced sequential processing of a glycosyl-phosphatidylinositol-anchored ectoprotein in Saccharomyces cerevisiae.

G Müller 1, E Gross 1, S Wied 1, W Bandlow 1
PMCID: PMC231021  PMID: 8524327

Abstract

Transfer of spheroplasts from the yeast Saccharomyces cerevisiae to glucose leads to the activation of an endogenous (glycosyl)-phosphatidylinositol-specific phospholipase C ([G]PI-PLC), which cleaves the anchor of at least one glycosyl-phosphatidylinositol (GPI)-anchored protein, the cyclic AMP (cAMP)-binding ectoprotein Gce1p (G. Müller and W. Bandlow, J. Cell Biol. 122:325-336, 1993). Analyses of the turnover of two constituents of the anchor, myo-inositol and ethanolamine, relative to the protein label as well as separation of the two differently processed versions of Gce1p by isoelectric focusing in spheroplasts demonstrate the glucose-induced conversion of amphiphilic Gce1p first into a lipolytically cleaved hydrophilic intermediate, which is then processed into another hydrophilic version lacking both myo-inositol and ethanolamine. When incubated with unlabeled spheroplasts, the lipolytically cleaved intermediate prepared in vitro is converted into the version lacking all anchor constituents, whereby the anchor glycan is apparently removed as a whole. The secondary cleavage ensues independently of the carbon source, attributing the key role in glucose-induced anchor processing to the endogenous (G)PI-PLC. The secondary processing of the lipolytically cleaved intermediate of Gce1p at the plasma membrane is correlated with the emergence of a covalently linked high-molecular-weight form of a cAMP-binding protein at the cell wall. This protein lacks anchor components, and its protein moiety appears to be identical with double-processed Gce1p detectable at the plasma membrane in spheroplasts. The data suggest that glucose-induced double processing of GPI anchors represents part of a mechanism of regulated cell wall expression of proteins in yeast cells.

Full Text

The Full Text of this article is available as a PDF (847.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achstetter T., Emter O., Ehmann C., Wolf D. H. Proteolysis in eukaryotic cells. Identification of multiple proteolytic enzymes in yeast. J Biol Chem. 1984 Nov 10;259(21):13334–13343. [PubMed] [Google Scholar]
  2. Anderson R. G., Kamen B. A., Rothberg K. G., Lacey S. W. Potocytosis: sequestration and transport of small molecules by caveolae. Science. 1992 Jan 24;255(5043):410–411. doi: 10.1126/science.1310359. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. G. Plasmalemmal caveolae and GPI-anchored membrane proteins. Curr Opin Cell Biol. 1993 Aug;5(4):647–652. doi: 10.1016/0955-0674(93)90135-d. [DOI] [PubMed] [Google Scholar]
  4. Barton P. L., Futerman A. H., Silman I. Arrhenius plots of acetylcholinesterase activity in mammalian erythrocytes and in Torpedo electric organ. Effect of solubilization by proteinases and by a phosphatidylinositol-specific phospholipase C. Biochem J. 1985 Oct 1;231(1):237–240. doi: 10.1042/bj2310237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Braun-Breton C., Rosenberry T. L., da Silva L. P. Induction of the proteolytic activity of a membrane protein in Plasmodium falciparum by phosphatidyl inositol-specific phospholipase C. Nature. 1988 Mar 31;332(6163):457–459. doi: 10.1038/332457a0. [DOI] [PubMed] [Google Scholar]
  6. Brewis I. A., Turner A. J., Hooper N. M. Activation of the glycosyl-phosphatidylinositol-anchored membrane dipeptidase upon release from pig kidney membranes by phospholipase C. Biochem J. 1994 Oct 15;303(Pt 2):633–638. doi: 10.1042/bj3030633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  8. Chan B. L., Lisanti M. P., Rodriguez-Boulan E., Saltiel A. R. Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor. Science. 1988 Sep 23;241(4873):1670–1672. doi: 10.1126/science.241.4873.1670. [DOI] [PubMed] [Google Scholar]
  9. Conzelmann A., Riezman H., Desponds C., Bron C. A major 125-kd membrane glycoprotein of Saccharomyces cerevisiae is attached to the lipid bilayer through an inositol-containing phospholipid. EMBO J. 1988 Jul;7(7):2233–2240. doi: 10.1002/j.1460-2075.1988.tb03063.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davitz M. A., Hereld D., Shak S., Krakow J., Englund P. T., Nussenzweig V. A glycan-phosphatidylinositol-specific phospholipase D in human serum. Science. 1987 Oct 2;238(4823):81–84. doi: 10.1126/science.2443973. [DOI] [PubMed] [Google Scholar]
  11. Deeg M. A., Humphrey D. R., Yang S. H., Ferguson T. R., Reinhold V. N., Rosenberry T. L. Glycan components in the glycoinositol phospholipid anchor of human erythrocyte acetylcholinesterase. Novel fragments produced by trifluoroacetic acid. J Biol Chem. 1992 Sep 15;267(26):18573–18580. [PubMed] [Google Scholar]
  12. Edidin M., Stroynowski I. Differences between the lateral organization of conventional and inositol phospholipid-anchored membrane proteins. A further definition of micrometer scale membrane domains. J Cell Biol. 1991 Mar;112(6):1143–1150. doi: 10.1083/jcb.112.6.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  14. Fankhauser C., Homans S. W., Thomas-Oates J. E., McConville M. J., Desponds C., Conzelmann A., Ferguson M. A. Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae. J Biol Chem. 1993 Dec 15;268(35):26365–26374. [PubMed] [Google Scholar]
  15. Ferguson M. A., Homans S. W., Dwek R. A., Rademacher T. W. Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science. 1988 Feb 12;239(4841 Pt 1):753–759. doi: 10.1126/science.3340856. [DOI] [PubMed] [Google Scholar]
  16. Fox J. A., Soliz N. M., Saltiel A. R. Purification of a phosphatidylinositol-glycan-specific phospholipase C from liver plasma membranes: a possible target of insulin action. Proc Natl Acad Sci U S A. 1987 May;84(9):2663–2667. doi: 10.1073/pnas.84.9.2663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Helenius A., Simons K. Charge shift electrophoresis: simple method for distinguishing between amphiphilic and hydrophilic proteins in detergent solution. Proc Natl Acad Sci U S A. 1977 Feb;74(2):529–532. doi: 10.1073/pnas.74.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ishihara M., Fedarko N. S., Conrad H. E. Involvement of phosphatidylinositol and insulin in the coordinate regulation of proteoheparan sulfate metabolism and hepatocyte growth. J Biol Chem. 1987 Apr 5;262(10):4708–4716. [PubMed] [Google Scholar]
  19. Klip A., Ramlal T., Douen A. G., Burdett E., Young D., Cartee G. D., Holloszy J. O. Insulin-induced decrease in 5'-nucleotidase activity in skeletal muscle membranes. FEBS Lett. 1988 Oct 10;238(2):419–423. doi: 10.1016/0014-5793(88)80524-6. [DOI] [PubMed] [Google Scholar]
  20. Klis F. M. Review: cell wall assembly in yeast. Yeast. 1994 Jul;10(7):851–869. doi: 10.1002/yea.320100702. [DOI] [PubMed] [Google Scholar]
  21. Kramer W., Müller G., Girbig F., Gutjahr U., Kowalewski S., Hartz D., Summ H. D. Differential interaction of glimepiride and glibenclamide with the beta-cell sulfonylurea receptor. II. Photoaffinity labeling of a 65 kDa protein by [3H]glimepiride. Biochim Biophys Acta. 1994 May 11;1191(2):278–290. doi: 10.1016/0005-2736(94)90178-3. [DOI] [PubMed] [Google Scholar]
  22. Kroczek R. A., Gunter K. C., Germain R. N., Shevach E. M. Thy-1 functions as a signal transduction molecule in T lymphocytes and transfected B lymphocytes. Nature. 1986 Jul 10;322(6075):181–184. doi: 10.1038/322181a0. [DOI] [PubMed] [Google Scholar]
  23. Larner J. Insulin-signaling mechanisms. Lessons from the old testament of glycogen metabolism and the new testament of molecular biology. Diabetes. 1988 Mar;37(3):262–275. doi: 10.2337/diab.37.3.262. [DOI] [PubMed] [Google Scholar]
  24. Lisanti M. P., Darnell J. C., Chan B. L., Rodriguez-Boulan E., Saltiel A. R. The distribution of glycosyl-phosphatidylinositol anchored proteins is differentially regulated by serum and insulin. Biochem Biophys Res Commun. 1989 Oct 31;164(2):824–832. doi: 10.1016/0006-291x(89)91533-7. [DOI] [PubMed] [Google Scholar]
  25. Lu C. F., Kurjan J., Lipke P. N. A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin. Mol Cell Biol. 1994 Jul;14(7):4825–4833. doi: 10.1128/mcb.14.7.4825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lu C. F., Montijn R. C., Brown J. L., Klis F., Kurjan J., Bussey H., Lipke P. N. Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol. 1995 Feb;128(3):333–340. doi: 10.1083/jcb.128.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Magdolen U., Müller G., Magdolen V., Bandlow W. A yeast gene (BLH1) encodes a polypeptide with high homology to vertebrate bleomycin hydrolase, a family member of thiol proteinases. Biochim Biophys Acta. 1993 Jan 23;1171(3):299–303. doi: 10.1016/0167-4781(93)90069-p. [DOI] [PubMed] [Google Scholar]
  28. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Metz C. N., Brunner G., Choi-Muira N. H., Nguyen H., Gabrilove J., Caras I. W., Altszuler N., Rifkin D. B., Wilson E. L., Davitz M. A. Release of GPI-anchored membrane proteins by a cell-associated GPI-specific phospholipase D. EMBO J. 1994 Apr 1;13(7):1741–1751. doi: 10.1002/j.1460-2075.1994.tb06438.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Montijn R. C., van Rinsum J., van Schagen F. A., Klis F. M. Glucomannoproteins in the cell wall of Saccharomyces cerevisiae contain a novel type of carbohydrate side chain. J Biol Chem. 1994 Jul 29;269(30):19338–19342. [PubMed] [Google Scholar]
  31. Müller G., Bandlow W. A cAMP-binding ectoprotein in the yeast Saccharomyces cerevisiae. Biochemistry. 1991 Oct 22;30(42):10181–10190. doi: 10.1021/bi00106a016. [DOI] [PubMed] [Google Scholar]
  32. Müller G., Bandlow W. An amphitropic cAMP-binding protein in yeast mitochondria. 1. Synergistic control of the intramitochondrial location by calcium and phospholipid. Biochemistry. 1989 Dec 26;28(26):9957–9967. doi: 10.1021/bi00452a013. [DOI] [PubMed] [Google Scholar]
  33. Müller G., Bandlow W. Glucose induces lipolytic cleavage of a glycolipidic plasma membrane anchor in yeast. J Cell Biol. 1993 Jul;122(2):325–336. doi: 10.1083/jcb.122.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Müller G., Bandlow W. Lipolytic membrane release of two phosphatidylinositol-anchored cAMP receptor proteins in yeast alters their ligand-binding parameters. Arch Biochem Biophys. 1994 Feb 1;308(2):504–514. doi: 10.1006/abbi.1994.1071. [DOI] [PubMed] [Google Scholar]
  35. Müller G., Bandlow W. Two lipid-anchored cAMP-binding proteins in the yeast Saccharomyces cerevisiae are unrelated to the R subunit of cytoplasmic protein kinase A. Eur J Biochem. 1991 Dec 5;202(2):299–308. doi: 10.1111/j.1432-1033.1991.tb16376.x. [DOI] [PubMed] [Google Scholar]
  36. Müller G., Dearey E. A., Korndörfer A., Bandlow W. Stimulation of a glycosyl-phosphatidylinositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat adipocytes depends on increased glucose transport. J Cell Biol. 1994 Sep;126(5):1267–1276. doi: 10.1083/jcb.126.5.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Müller G., Dearey E. A., Pünter J. The sulphonylurea drug, glimepiride, stimulates release of glycosylphosphatidylinositol-anchored plasma-membrane proteins from 3T3 adipocytes. Biochem J. 1993 Jan 15;289(Pt 2):509–521. doi: 10.1042/bj2890509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Müller G., Korndörfer A., Kornak U., Malaisse W. J. Porin proteins in mitochondria from rat pancreatic islet cells and white adipocytes: identification and regulation of hexokinase binding by the sulfonylurea glimepiride. Arch Biochem Biophys. 1994 Jan;308(1):8–23. doi: 10.1006/abbi.1994.1002. [DOI] [PubMed] [Google Scholar]
  39. Müller G., Korndörfer A., Saar K., Karbe-Thönges B., Fasold H., Müllner S. 4'-Amino-benzamido-taurocholic acid selectively solubilizes glycosyl-phosphatidylinositol-anchored membrane proteins and improves lipolytic cleavage of their membrane anchors by specific phospholipases. Arch Biochem Biophys. 1994 Mar;309(2):329–340. doi: 10.1006/abbi.1994.1121. [DOI] [PubMed] [Google Scholar]
  40. Müller G., Schubert K., Fiedler F., Bandlow W. The cAMP-binding ectoprotein from Saccharomyces cerevisiae is membrane-anchored by glycosyl-phosphatidylinositol. J Biol Chem. 1992 Dec 15;267(35):25337–25346. [PubMed] [Google Scholar]
  41. Müller G., Wetekam E. M., Jung C., Bandlow W. Membrane association of lipoprotein lipase and a cAMP-binding ectoprotein in rat adipocytes. Biochemistry. 1994 Oct 11;33(40):12149–12159. doi: 10.1021/bi00206a018. [DOI] [PubMed] [Google Scholar]
  42. Müller G., Zimmermann R. Import of honeybee prepromelittin into the endoplasmic reticulum: structural basis for independence of SRP and docking protein. EMBO J. 1987 Jul;6(7):2099–2107. doi: 10.1002/j.1460-2075.1987.tb02476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Popov N., Schmitt M., Schulzeck S., Matthies H. Eine störungsfreie Mikromethode zur Bestimmung des Proteingehaltes in Gewebehomogenaten. Acta Biol Med Ger. 1975;34(9):1441–1446. [PubMed] [Google Scholar]
  44. Robinson P. J., Millrain M., Antoniou J., Simpson E., Mellor A. L. A glycophospholipid anchor is required for Qa-2-mediated T cell activation. Nature. 1989 Nov 2;342(6245):85–87. doi: 10.1038/342085a0. [DOI] [PubMed] [Google Scholar]
  45. Romero G., Luttrell L., Rogol A., Zeller K., Hewlett E., Larner J. Phosphatidylinositol-glycan anchors of membrane proteins: potential precursors of insulin mediators. Science. 1988 Apr 22;240(4851):509–511. doi: 10.1126/science.3282305. [DOI] [PubMed] [Google Scholar]
  46. Schreiner R., Schnabel E., Wieland F. Novel N-glycosylation in eukaryotes: laminin contains the linkage unit beta-glucosylasparagine. J Cell Biol. 1994 Mar;124(6):1071–1081. doi: 10.1083/jcb.124.6.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Schreuder M. P., Brekelmans S., van den Ende H., Klis F. M. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast. 1993 Apr;9(4):399–409. doi: 10.1002/yea.320090410. [DOI] [PubMed] [Google Scholar]
  48. Spooner P. M., Chernick S. S., Garrison M. M., Scow R. O. Insulin regulation of lipoprotein lipase activity and release in 3T3-L1 adipocytes. Separation and dependence of hormonal effects on hexose metabolism and synthesis of RNA and protein. J Biol Chem. 1979 Oct 25;254(20):10021–10029. [PubMed] [Google Scholar]
  49. Stevens V. L. Biosynthesis of glycosylphosphatidylinositol membrane anchors. Biochem J. 1995 Sep 1;310(Pt 2):361–370. doi: 10.1042/bj3100361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Su B., Waneck G. L., Flavell R. A., Bothwell A. L. The glycosyl phosphatidylinositol anchor is critical for Ly-6A/E-mediated T cell activation. J Cell Biol. 1991 Feb;112(3):377–384. doi: 10.1083/jcb.112.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vai M., Popolo L., Grandori R., Lacanà E., Alberghina L. The cell cycle modulated glycoprotein GP115 is one of the major yeast proteins containing glycosylphosphatidylinositol. Biochim Biophys Acta. 1990 May 8;1038(3):277–285. doi: 10.1016/0167-4838(90)90237-a. [DOI] [PubMed] [Google Scholar]
  52. Van Rinsum J., Klis F. M., van den Ende H. Cell wall glucomannoproteins of Saccharomyces cerevisiae mnn9. Yeast. 1991 Oct;7(7):717–726. doi: 10.1002/yea.320070707. [DOI] [PubMed] [Google Scholar]
  53. Vidugiriene J., Menon A. K. Biosynthesis of glycosylphosphatidylinositol anchors. Methods Enzymol. 1995;250:513–535. doi: 10.1016/0076-6879(95)50094-4. [DOI] [PubMed] [Google Scholar]
  54. Vogel M., Kowalewski H., Zimmermann H., Hooper N. M., Turner A. J. Soluble low-Km 5'-nucleotidase from electric-ray (Torpedo marmorata) electric organ and bovine cerebral cortex is derived from the glycosyl-phosphatidylinositol-anchored ectoenzyme by phospholipase C cleavage. Biochem J. 1992 Jun 15;284(Pt 3):621–624. doi: 10.1042/bj2840621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  56. Wojciechowicz D., Lu C. F., Kurjan J., Lipke P. N. Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily. Mol Cell Biol. 1993 Apr;13(4):2554–2563. doi: 10.1128/mcb.13.4.2554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zamze S. E., Ferguson M. A., Collins R., Dwek R. A., Rademacher T. W. Characterization of the cross-reacting determinant (CRD) of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein. Eur J Biochem. 1988 Oct 1;176(3):527–534. doi: 10.1111/j.1432-1033.1988.tb14310.x. [DOI] [PubMed] [Google Scholar]
  58. Zhang F., Crise B., Su B., Hou Y., Rose J. K., Bothwell A., Jacobson K. Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol-linked proteins: toward establishing rules governing the lateral mobility of membrane proteins. J Cell Biol. 1991 Oct;115(1):75–84. doi: 10.1083/jcb.115.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zurzolo C., van't Hof W., van Meer G., Rodriguez-Boulan E. VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol-anchored proteins in epithelial cells. EMBO J. 1994 Jan 1;13(1):42–53. doi: 10.1002/j.1460-2075.1994.tb06233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. de Nobel H., Lipke P. N. Is there a role for GPIs in yeast cell-wall assembly? Trends Cell Biol. 1994 Feb;4(2):42–45. doi: 10.1016/0962-8924(94)90003-5. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES