Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Mar;16(3):907–913. doi: 10.1128/mcb.16.3.907

Amber suppression in mammalian cells dependent upon expression of an Escherichia coli aminoacyl-tRNA synthetase gene.

H J Drabkin 1, H J Park 1, U L RajBhandary 1
PMCID: PMC231072  PMID: 8622693

Abstract

As an approach to inducible suppression of nonsense mutations in mammalian and in higher eukaryotic cells, we have analyzed the expression of an Escherichia coli glutamine-inserting amber suppressor tRNA gene in COS-1 and CV-1 monkey kidney cells. The tRNA gene used has the suppressor tRNA coding sequence flanked by sequences derived from a human initiator methionine tRNA gene and has two changes in the coding sequence. This tRNA gene is transcribed, and the transcript is processed to yield the mature tRNA in COS-1 and CV-1 cells. We show that the tRNA is not aminoacylated in COS-1 cells by any of the endogenous aminoacyl-tRNA synthetases and is therefore not functional as a suppressor. Concomitant expression of the E. coli glutaminyl-tRNA synthetase gene results in aminoacylation of the suppressor tRNA and its functioning as a suppressor. These results open up the possibility of attempts at regulated suppression of nonsense codons in mammalian cells by regulating expression of the E. coli glutaminyl-tRNA synthetase gene in an inducible, cell-type specific, or developmentally regulated manner.

Full Text

The Full Text of this article is available as a PDF (334.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson J., Martin R. Mutations to nonsense codons in human genetic disease: implications for gene therapy by nonsense suppressor tRNAs. Nucleic Acids Res. 1994 Apr 25;22(8):1327–1334. doi: 10.1093/nar/22.8.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BENZER S., CHAMPE S. P. A change from nonsense to sense in the genetic code. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1114–1121. doi: 10.1073/pnas.48.7.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhat R. A., Furtado M. R., Thimmappaya B. Efficient expression of small RNA polymerase III genes from a novel simian virus 40 vector and their effect on viral gene expression. Nucleic Acids Res. 1989 Feb 11;17(3):1159–1176. doi: 10.1093/nar/17.3.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buratowski S. The basics of basal transcription by RNA polymerase II. Cell. 1994 Apr 8;77(1):1–3. doi: 10.1016/0092-8674(94)90226-7. [DOI] [PubMed] [Google Scholar]
  5. Capone J. P., Sedivy J. M., Sharp P. A., RajBhandary U. L. Introduction of UAG, UAA, and UGA nonsense mutations at a specific site in the Escherichia coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cells. Mol Cell Biol. 1986 Sep;6(9):3059–3067. doi: 10.1128/mcb.6.9.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Capone J. P., Sharp P. A., RajBhandary U. L. Amber, ochre and opal suppressor tRNA genes derived from a human serine tRNA gene. EMBO J. 1985 Jan;4(1):213–221. doi: 10.1002/j.1460-2075.1985.tb02338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Castagnoli L., Ciliberto G., Cortese R. Processing of eukaryotic tRNA precursors: secondary structure of the precursor specific sequences affects the rate but not the accuracy of processing reactions. Nucleic Acids Res. 1982 Jul 24;10(14):4135–4145. doi: 10.1093/nar/10.14.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chejanovsky N., Carter B. J. Replication of a human parvovirus nonsense mutant in mammalian cells containing an inducible amber suppressor. Virology. 1989 Jul;171(1):239–247. doi: 10.1016/0042-6822(89)90531-x. [DOI] [PubMed] [Google Scholar]
  9. Dingermann T., Frank-Stoll U., Werner H., Wissmann A., Hillen W., Jacquet M., Marschalek R. RNA polymerase III catalysed transcription can be regulated in Saccharomyces cerevisiae by the bacterial tetracycline repressor-operator system. EMBO J. 1992 Apr;11(4):1487–1492. doi: 10.1002/j.1460-2075.1992.tb05193.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dingermann T., Werner H., Schütz A., Zündorf I., Nerke K., Knecht D., Marschalek R. Establishment of a system for conditional gene expression using an inducible tRNA suppressor gene. Mol Cell Biol. 1992 Sep;12(9):4038–4045. doi: 10.1128/mcb.12.9.4038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doerig R. E., Suter B., Gray M., Kubli E. Identification of an amber nonsense mutation in the rosy516 gene by germline transformation of an amber suppressor tRNA gene. EMBO J. 1988 Aug;7(8):2579–2584. doi: 10.1002/j.1460-2075.1988.tb03107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drabkin H. J., Helk B., RajBhandary U. L. The role of nucleotides conserved in eukaryotic initiator methionine tRNAs in initiation of protein synthesis. J Biol Chem. 1993 Nov 25;268(33):25221–25228. [PubMed] [Google Scholar]
  13. Drabkin H. J. Introduction of an intervening sequence into a human serine suppressor tRNA gene: effects on gene expression in vitro and in vivo. Nucleic Acids Res. 1988 Dec 23;16(24):11591–11606. doi: 10.1093/nar/16.24.11591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Drabkin H. J., RajBhandary U. L. Expression in vivo of a mutant human initiator tRNA gene in mammalian cells using a simian virus 40 vector. J Biol Chem. 1985 May 10;260(9):5588–5595. [PubMed] [Google Scholar]
  15. Drabkin H. J., RajBhandary U. L. Site-specific mutagenesis on a human initiator methionine tRNA gene within a sequence conserved in all eukaryotic initiator tRNAs and studies of its effects on in vitro transcription. J Biol Chem. 1985 May 10;260(9):5580–5587. [PubMed] [Google Scholar]
  16. Edwards H., Schimmel P. A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase. Mol Cell Biol. 1990 Apr;10(4):1633–1641. doi: 10.1128/mcb.10.4.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Edwards H., Trézéguet V., Schimmel P. An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1153–1156. doi: 10.1073/pnas.88.4.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Englisch-Peters S., Conley J., Plumbridge J., Leptak C., Söll D., Rogers M. J. Mutant enzymes and tRNAs as probes of the glutaminyl-tRNA synthetase: tRNA(Gln) interaction. Biochimie. 1991 Dec;73(12):1501–1508. doi: 10.1016/0300-9084(91)90184-3. [DOI] [PubMed] [Google Scholar]
  19. Fournier M. J., Ozeki H. Structure and organization of the transfer ribonucleic acid genes of Escherichia coli K-12. Microbiol Rev. 1985 Dec;49(4):379–397. doi: 10.1128/mr.49.4.379-397.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Furter R., Snaith M., Gillespie D. E., Hall B. D. Endonucleolytic cleavage of a long 3'-trailer sequence in a nuclear yeast suppressor tRNA. Biochemistry. 1992 Nov 10;31(44):10817–10824. doi: 10.1021/bi00159a024. [DOI] [PubMed] [Google Scholar]
  21. GAREN A., SIDDIQI O. Suppression of mutations in the alkaline phosphatase structural cistron of E. coli. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1121–1127. doi: 10.1073/pnas.48.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gehring W. J., Affolter M., Bürglin T. Homeodomain proteins. Annu Rev Biochem. 1994;63:487–526. doi: 10.1146/annurev.bi.63.070194.002415. [DOI] [PubMed] [Google Scholar]
  23. Geiduschek E. P., Tocchini-Valentini G. P. Transcription by RNA polymerase III. Annu Rev Biochem. 1988;57:873–914. doi: 10.1146/annurev.bi.57.070188.004301. [DOI] [PubMed] [Google Scholar]
  24. Gossen M., Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547–5551. doi: 10.1073/pnas.89.12.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  26. Ho Y. S., Kan Y. W. In vivo aminoacylation of human and Xenopus suppressor tRNAs constructed by site-specific mutagenesis. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2185–2188. doi: 10.1073/pnas.84.8.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hudziak R. M., Laski F. A., RajBhandary U. L., Sharp P. A., Capecchi M. R. Establishment of mammalian cell lines containing multiple nonsense mutations and functional suppressor tRNA genes. Cell. 1982 Nov;31(1):137–146. doi: 10.1016/0092-8674(82)90413-5. [DOI] [PubMed] [Google Scholar]
  28. Jacobson K. B. Reaction of aminoacyl-tRNA synthetases with heterologous tRNA's. Prog Nucleic Acid Res Mol Biol. 1971;11:461–488. doi: 10.1016/s0079-6603(08)60335-9. [DOI] [PubMed] [Google Scholar]
  29. Kunes S., Steller H. Ablation of Drosophila photoreceptor cells by conditional expression of a toxin gene. Genes Dev. 1991 Jun;5(6):970–983. doi: 10.1101/gad.5.6.970. [DOI] [PubMed] [Google Scholar]
  30. Laski F. A., Belagaje R., RajBhandary U. L., Sharp P. A. An amber suppressor tRNA gene derived by site-specific mutagenesis: cloning and function in mammalian cells. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5813–5817. doi: 10.1073/pnas.79.19.5813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Laski F. A., Ganguly S., Sharp P. A., RajBhandary U. L., Rubin G. M. Construction, stable transformation, and function of an amber suppressor tRNA gene in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6696–6698. doi: 10.1073/pnas.86.17.6696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Melton D. A., Cortese R. Transcription of cloned tRNA genes and the nuclear partitioning of a tRNA precursor. Cell. 1979 Dec;18(4):1165–1172. doi: 10.1016/0092-8674(79)90229-0. [DOI] [PubMed] [Google Scholar]
  33. Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 1991;40:95–142. doi: 10.1016/s0079-6603(08)60840-5. [DOI] [PubMed] [Google Scholar]
  34. Negrutskii B. S., Stapulionis R., Deutscher M. P. Supramolecular organization of the mammalian translation system. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):964–968. doi: 10.1073/pnas.91.3.964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ohlsson B. M., Strigini P. F., Beckwith J. R. Allelic amber and ochre suppressors. J Mol Biol. 1968 Sep 14;36(2):209–218. doi: 10.1016/0022-2836(68)90376-8. [DOI] [PubMed] [Google Scholar]
  36. Palmiter R. D., Behringer R. R., Quaife C. J., Maxwell F., Maxwell I. H., Brinster R. L. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell. 1987 Jul 31;50(3):435–443. doi: 10.1016/0092-8674(87)90497-1. [DOI] [PubMed] [Google Scholar]
  37. Robinson D. F., Maxwell I. H. Suppression of single and double nonsense mutations introduced into the diphtheria toxin A-chain gene: a potential binary system for toxin gene therapy. Hum Gene Ther. 1995 Feb;6(2):137–143. doi: 10.1089/hum.1995.6.2-137. [DOI] [PubMed] [Google Scholar]
  38. Rogers M. J., Adachi T., Inokuchi H., Söll D. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):291–295. doi: 10.1073/pnas.91.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sedivy J. M., Capone J. P., RajBhandary U. L., Sharp P. A. An inducible mammalian amber suppressor: propagation of a poliovirus mutant. Cell. 1987 Jul 31;50(3):379–389. doi: 10.1016/0092-8674(87)90492-2. [DOI] [PubMed] [Google Scholar]
  40. Sharp S. J., Schaack J., Cooley L., Burke D. J., Söll D. Structure and transcription of eukaryotic tRNA genes. CRC Crit Rev Biochem. 1985;19(2):107–144. doi: 10.3109/10409238509082541. [DOI] [PubMed] [Google Scholar]
  41. Silberklang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. doi: 10.1016/0076-6879(79)59072-7. [DOI] [PubMed] [Google Scholar]
  42. Steinberg S., Misch A., Sprinzl M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1993 Jul 1;21(13):3011–3015. doi: 10.1093/nar/21.13.3011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Syroid D. E., Tapping R. I., Capone J. P. Regulated expression of a mammalian nonsense suppressor tRNA gene in vivo and in vitro using the lac operator/repressor system. Mol Cell Biol. 1992 Oct;12(10):4271–4278. doi: 10.1128/mcb.12.10.4271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Söll D., RajBhandary U. L. Studies on polynucleotides. LXXVI. Specificity of transfer RNA for codon recognition as studied by amino acid incorporation. J Mol Biol. 1967 Oct 14;29(1):113–124. doi: 10.1016/0022-2836(67)90184-2. [DOI] [PubMed] [Google Scholar]
  45. Temple G. F., Dozy A. M., Roy K. L., Kan Y. W. Construction of a functional human suppressor tRNA gene: an approach to gene therapy for beta-thalassaemia. Nature. 1982 Apr 8;296(5857):537–540. doi: 10.1038/296537a0. [DOI] [PubMed] [Google Scholar]
  46. Tjian R., Maniatis T. Transcriptional activation: a complex puzzle with few easy pieces. Cell. 1994 Apr 8;77(1):5–8. doi: 10.1016/0092-8674(94)90227-5. [DOI] [PubMed] [Google Scholar]
  47. Varshney U., Lee C. P., RajBhandary U. L. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem. 1991 Dec 25;266(36):24712–24718. [PubMed] [Google Scholar]
  48. Wigler M., Sweet R., Sim G. K., Wold B., Pellicer A., Lacy E., Maniatis T., Silverstein S., Axel R. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell. 1979 Apr;16(4):777–785. doi: 10.1016/0092-8674(79)90093-x. [DOI] [PubMed] [Google Scholar]
  49. Yamao F., Inokuchi H., Cheung A., Ozeki H., Söll D. Escherichia coli glutaminyl-tRNA synthetase. I. Isolation and DNA sequence of the glnS gene. J Biol Chem. 1982 Oct 10;257(19):11639–11643. [PubMed] [Google Scholar]
  50. Yarus M., Cline S., Raftery L., Wier P., Bradley D. The translational efficiency of tRNA is a property of the anticodon arm. J Biol Chem. 1986 Aug 15;261(23):10496–10505. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES