Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Mar;16(3):1027–1034. doi: 10.1128/mcb.16.3.1027

Ras-induced activation of Raf-1 is dependent on tyrosine phosphorylation.

T Jelinek 1, P Dent 1, T W Sturgill 1, M J Weber 1
PMCID: PMC231085  PMID: 8622647

Abstract

Although Rafs play a central role in signal transduction, the mechanism(s) by which they become activated is poorly understood. Raf-1 activation is dependent on the protein's ability to bind Ras, but Ras binding is insufficient to activate Raf-1 tyrosine phosphorylation to this Ras-induced activation, in the absence of an over-expressed tyrosine kinase. We demonstrate that Raf-1 purified form Sf9 cells coinfected with baculovirus Ras but not Src could be inactivated by protein tyrosine phosphatase PTP-1B. 14-3-3 and Hsp90 proteins blocked both the tyrosine dephosphorylation and inactivation of Raf-1, suggesting that Raf-1 activity is phosphotyrosine dependent. In Ras-transformed NIH 3T3 cells, a minority of Raf-1 protein was membrane associated, but essentially all Raf-1 activity and Raf-1 phosphotyrosine fractionated with plasma membranes. Thus, the tyrosine-phosphorylated and active pool of Raf-1 constitute a membrane-localized subfraction which could also be inactivated with PTP-1B. By contrast, B-Raf has aspartic acid residues at positions homologous to those of the phosphorylated tyrosines (at 340 and 341) of Raf-1 and displays a high basal level of activity. B-Raf was not detectably tyrosine phosphorylated, membrane localized, or further activated upon Ras transformation, even though B-Raf has been shown to bind to Ras in vitro. We conclude that tyrosine phosphorylation is an essential component of the mechanism by which Ras activates Raf-1 kinase activity and that steady-state activated Ras is insufficient to activate B-Raf in vivo.

Full Text

The Full Text of this article is available as a PDF (359.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. App H., Hazan R., Zilberstein A., Ullrich A., Schlessinger J., Rapp U. Epidermal growth factor (EGF) stimulates association and kinase activity of Raf-1 with the EGF receptor. Mol Cell Biol. 1991 Feb;11(2):913–919. doi: 10.1128/mcb.11.2.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baccarini M., Gill G. N., Stanley E. R. Epidermal growth factor stimulates phosphorylation of RAF-1 independently of receptor autophosphorylation and internalization. J Biol Chem. 1991 Jun 15;266(17):10941–10945. [PubMed] [Google Scholar]
  3. Baccarini M., Sabatini D. M., App H., Rapp U. R., Stanley E. R. Colony stimulating factor-1 (CSF-1) stimulates temperature dependent phosphorylation and activation of the RAF-1 proto-oncogene product. EMBO J. 1990 Nov;9(11):3649–3657. doi: 10.1002/j.1460-2075.1990.tb07576.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blackshear P. J., Haupt D. M., App H., Rapp U. R. Insulin activates the Raf-1 protein kinase. J Biol Chem. 1990 Jul 25;265(21):12131–12134. [PubMed] [Google Scholar]
  5. Catling A. D., Reuter C. W., Cox M. E., Parsons S. J., Weber M. J. Partial purification of a mitogen-activated protein kinase kinase activator from bovine brain. Identification as B-Raf or a B-Raf-associated activity. J Biol Chem. 1994 Nov 25;269(47):30014–30021. [PubMed] [Google Scholar]
  6. Chang J. H., Wilson L. K., Moyers J. S., Zhang K., Parsons S. J. Increased levels of p21ras-GTP and enhanced DNA synthesis accompany elevated tyrosyl phosphorylation of GAP-associated proteins, p190 and p62, in c-src overexpressors. Oncogene. 1993 Apr;8(4):959–967. [PubMed] [Google Scholar]
  7. Daum G., Eisenmann-Tappe I., Fries H. W., Troppmair J., Rapp U. R. The ins and outs of Raf kinases. Trends Biochem Sci. 1994 Nov;19(11):474–480. doi: 10.1016/0968-0004(94)90133-3. [DOI] [PubMed] [Google Scholar]
  8. Dent P., Haser W., Haystead T. A., Vincent L. A., Roberts T. M., Sturgill T. W. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science. 1992 Sep 4;257(5075):1404–1407. doi: 10.1126/science.1326789. [DOI] [PubMed] [Google Scholar]
  9. Dent P., Jelinek T., Morrison D. K., Weber M. J., Sturgill T. W. Reversal of Raf-1 activation by purified and membrane-associated protein phosphatases. Science. 1995 Jun 30;268(5219):1902–1906. doi: 10.1126/science.7604263. [DOI] [PubMed] [Google Scholar]
  10. Dent P., Sturgill T. W. Activation of (His)6-Raf-1 in vitro by partially purified plasma membranes from v-Ras-transformed and serum-stimulated fibroblasts. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9544–9548. doi: 10.1073/pnas.91.20.9544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DiBattiste D., Golubic M., Stacey D., Wolfman A. Differences in the interaction of p21c-Ha-ras-GMP-PNP with full-length neurofibromin and GTPase-activating protein. Oncogene. 1993 Mar;8(3):637–643. [PubMed] [Google Scholar]
  12. Dickson B., Sprenger F., Morrison D., Hafen E. Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature. 1992 Dec 10;360(6404):600–603. doi: 10.1038/360600a0. [DOI] [PubMed] [Google Scholar]
  13. Downward J., Graves J. D., Warne P. H., Rayter S., Cantrell D. A. Stimulation of p21ras upon T-cell activation. Nature. 1990 Aug 23;346(6286):719–723. doi: 10.1038/346719a0. [DOI] [PubMed] [Google Scholar]
  14. Fabian J. R., Daar I. O., Morrison D. K. Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol. 1993 Nov;13(11):7170–7179. doi: 10.1128/mcb.13.11.7170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fantl W. J., Muslin A. J., Kikuchi A., Martin J. A., MacNicol A. M., Gross R. W., Williams L. T. Activation of Raf-1 by 14-3-3 proteins. Nature. 1994 Oct 13;371(6498):612–614. doi: 10.1038/371612a0. [DOI] [PubMed] [Google Scholar]
  16. Freed E., Symons M., Macdonald S. G., McCormick F., Ruggieri R. Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science. 1994 Sep 16;265(5179):1713–1716. doi: 10.1126/science.8085158. [DOI] [PubMed] [Google Scholar]
  17. Fu H., Xia K., Pallas D. C., Cui C., Conroy K., Narsimhan R. P., Mamon H., Collier R. J., Roberts T. M. Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science. 1994 Oct 7;266(5182):126–129. doi: 10.1126/science.7939632. [DOI] [PubMed] [Google Scholar]
  18. Gibbs J. B., Marshall M. S., Scolnick E. M., Dixon R. A., Vogel U. S. Modulation of guanine nucleotides bound to Ras in NIH3T3 cells by oncogenes, growth factors, and the GTPase activating protein (GAP). J Biol Chem. 1990 Nov 25;265(33):20437–20442. [PubMed] [Google Scholar]
  19. Han M., Golden A., Han Y., Sternberg P. W. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature. 1993 May 13;363(6425):133–140. doi: 10.1038/363133a0. [DOI] [PubMed] [Google Scholar]
  20. Herrmann C., Martin G. A., Wittinghofer A. Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J Biol Chem. 1995 Feb 17;270(7):2901–2905. doi: 10.1074/jbc.270.7.2901. [DOI] [PubMed] [Google Scholar]
  21. Howe L. R., Leevers S. J., Gómez N., Nakielny S., Cohen P., Marshall C. J. Activation of the MAP kinase pathway by the protein kinase raf. Cell. 1992 Oct 16;71(2):335–342. doi: 10.1016/0092-8674(92)90361-f. [DOI] [PubMed] [Google Scholar]
  22. Irie K., Gotoh Y., Yashar B. M., Errede B., Nishida E., Matsumoto K. Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science. 1994 Sep 16;265(5179):1716–1719. doi: 10.1126/science.8085159. [DOI] [PubMed] [Google Scholar]
  23. Jaiswal R. K., Moodie S. A., Wolfman A., Landreth G. E. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras. Mol Cell Biol. 1994 Oct;14(10):6944–6953. doi: 10.1128/mcb.14.10.6944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jelinek T., Catling A. D., Reuter C. W., Moodie S. A., Wolfman A., Weber M. J. RAS and RAF-1 form a signalling complex with MEK-1 but not MEK-2. Mol Cell Biol. 1994 Dec;14(12):8212–8218. doi: 10.1128/mcb.14.12.8212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jia Z., Barford D., Flint A. J., Tonks N. K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science. 1995 Jun 23;268(5218):1754–1758. doi: 10.1126/science.7540771. [DOI] [PubMed] [Google Scholar]
  26. Kizaka-Kondoh S., Okayama H. Raf-1 is not a major upstream regulator of MAP kinases in rat fibroblasts. FEBS Lett. 1993 Dec 27;336(2):255–258. doi: 10.1016/0014-5793(93)80814-b. [DOI] [PubMed] [Google Scholar]
  27. Kolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H., Finkenzeller G., Marmé D., Rapp U. R. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature. 1993 Jul 15;364(6434):249–252. doi: 10.1038/364249a0. [DOI] [PubMed] [Google Scholar]
  28. Kolch W., Heidecker G., Lloyd P., Rapp U. R. Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature. 1991 Jan 31;349(6308):426–428. doi: 10.1038/349426a0. [DOI] [PubMed] [Google Scholar]
  29. Kovacina K. S., Yonezawa K., Brautigan D. L., Tonks N. K., Rapp U. R., Roth R. A. Insulin activates the kinase activity of the Raf-1 proto-oncogene by increasing its serine phosphorylation. J Biol Chem. 1990 Jul 25;265(21):12115–12118. [PubMed] [Google Scholar]
  30. Kyriakis J. M., App H., Zhang X. F., Banerjee P., Brautigan D. L., Rapp U. R., Avruch J. Raf-1 activates MAP kinase-kinase. Nature. 1992 Jul 30;358(6385):417–421. doi: 10.1038/358417a0. [DOI] [PubMed] [Google Scholar]
  31. Kyriakis J. M., Force T. L., Rapp U. R., Bonventre J. V., Avruch J. Mitogen regulation of c-Raf-1 protein kinase activity toward mitogen-activated protein kinase-kinase. J Biol Chem. 1993 Jul 25;268(21):16009–16019. [PubMed] [Google Scholar]
  32. Leevers S. J., Paterson H. F., Marshall C. J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature. 1994 Jun 2;369(6479):411–414. doi: 10.1038/369411a0. [DOI] [PubMed] [Google Scholar]
  33. Marais R., Light Y., Paterson H. F., Marshall C. J. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 1995 Jul 3;14(13):3136–3145. doi: 10.1002/j.1460-2075.1995.tb07316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Marshall C. J. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev. 1994 Feb;4(1):82–89. doi: 10.1016/0959-437x(94)90095-7. [DOI] [PubMed] [Google Scholar]
  35. Maslinski W., Remillard B., Tsudo M., Strom T. B. Interleukin-2 (IL-2) induces tyrosine kinase-dependent translocation of active raf-1 from the IL-2 receptor into the cytosol. J Biol Chem. 1992 Aug 5;267(22):15281–15284. [PubMed] [Google Scholar]
  36. Maslinski W., Remillard B., Tsudo M., Strom T. B. Interleukin-2 receptor signal transduction: translocation of active serine-threonine kinase Raf-1 from IL-2 receptor into cytosol depends on IL-2-induced tyrosine kinase activation. Transplant Proc. 1993 Feb;25(1 Pt 1):109–110. [PubMed] [Google Scholar]
  37. Michaud N. R., Fabian J. R., Mathes K. D., Morrison D. K. 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner. Mol Cell Biol. 1995 Jun;15(6):3390–3397. doi: 10.1128/mcb.15.6.3390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Moodie S. A., Paris M. J., Kolch W., Wolfman A. Association of MEK1 with p21ras.GMPPNP is dependent on B-Raf. Mol Cell Biol. 1994 Nov;14(11):7153–7162. doi: 10.1128/mcb.14.11.7153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Moodie S. A., Willumsen B. M., Weber M. J., Wolfman A. Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science. 1993 Jun 11;260(5114):1658–1661. doi: 10.1126/science.8503013. [DOI] [PubMed] [Google Scholar]
  40. Morrison D. K., Heidecker G., Rapp U. R., Copeland T. D. Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem. 1993 Aug 15;268(23):17309–17316. [PubMed] [Google Scholar]
  41. Morrison D. K., Kaplan D. R., Escobedo J. A., Rapp U. R., Roberts T. M., Williams L. T. Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF beta-receptor. Cell. 1989 Aug 25;58(4):649–657. doi: 10.1016/0092-8674(89)90100-1. [DOI] [PubMed] [Google Scholar]
  42. Reed J. C., Torigoe T., Turner B. C., Merida I., Gaulton G., Saragovi H. U., Rapp U. R., Taichman R. Protooncogene-encoded protein kinases in interleukin-2 signal transduction. Semin Immunol. 1993 Oct;5(5):327–336. doi: 10.1006/smim.1993.1039. [DOI] [PubMed] [Google Scholar]
  43. Reuter C. W., Catling A. D., Jelinek T., Weber M. J. Biochemical analysis of MEK activation in NIH3T3 fibroblasts. Identification of B-Raf and other activators. J Biol Chem. 1995 Mar 31;270(13):7644–7655. doi: 10.1074/jbc.270.13.7644. [DOI] [PubMed] [Google Scholar]
  44. Schaap D., van der Wal J., Howe L. R., Marshall C. J., van Blitterswijk W. J. A dominant-negative mutant of raf blocks mitogen-activated protein kinase activation by growth factors and oncogenic p21ras. J Biol Chem. 1993 Sep 25;268(27):20232–20236. [PubMed] [Google Scholar]
  45. Scheele J. S., Rhee J. M., Boss G. R. Determination of absolute amounts of GDP and GTP bound to Ras in mammalian cells: comparison of parental and Ras-overproducing NIH 3T3 fibroblasts. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1097–1100. doi: 10.1073/pnas.92.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Stancato L. F., Chow Y. H., Hutchison K. A., Perdew G. H., Jove R., Pratt W. B. Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system. J Biol Chem. 1993 Oct 15;268(29):21711–21716. [PubMed] [Google Scholar]
  47. Stokoe D., Macdonald S. G., Cadwallader K., Symons M., Hancock J. F. Activation of Raf as a result of recruitment to the plasma membrane. Science. 1994 Jun 3;264(5164):1463–1467. doi: 10.1126/science.7811320. [DOI] [PubMed] [Google Scholar]
  48. Thompson P. A., Ledbetter J. A., Rapp U. R., Bolen J. B. The Raf-1 serine-threonine kinase is a substrate for the p56lck protein tyrosine kinase in human T-cells. Cell Growth Differ. 1991 Dec;2(12):609–617. [PubMed] [Google Scholar]
  49. Traverse S., Cohen P., Paterson H., Marshall C., Rapp U., Grand R. J. Specific association of activated MAP kinase kinase kinase (Raf) with the plasma membranes of ras-transformed retinal cells. Oncogene. 1993 Nov;8(11):3175–3181. [PubMed] [Google Scholar]
  50. Turner B. C., Tonks N. K., Rapp U. R., Reed J. C. Interleukin 2 regulates Raf-1 kinase activity through a tyrosine phosphorylation-dependent mechanism in a T-cell line. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5544–5548. doi: 10.1073/pnas.90.12.5544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Van Aelst L., Barr M., Marcus S., Polverino A., Wigler M. Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6213–6217. doi: 10.1073/pnas.90.13.6213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vojtek A. B., Hollenberg S. M., Cooper J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell. 1993 Jul 16;74(1):205–214. doi: 10.1016/0092-8674(93)90307-c. [DOI] [PubMed] [Google Scholar]
  53. Warne P. H., Viciana P. R., Downward J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature. 1993 Jul 22;364(6435):352–355. doi: 10.1038/364352a0. [DOI] [PubMed] [Google Scholar]
  54. Wartmann M., Davis R. J. The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J Biol Chem. 1994 Mar 4;269(9):6695–6701. [PubMed] [Google Scholar]
  55. Williams N. G., Roberts T. M., Li P. Both p21ras and pp60v-src are required, but neither alone is sufficient, to activate the Raf-1 kinase. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2922–2926. doi: 10.1073/pnas.89.7.2922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zhang K., Papageorge A. G., Lowy D. R. Mechanistic aspects of signaling through Ras in NIH 3T3 cells. Science. 1992 Jul 31;257(5070):671–674. doi: 10.1126/science.1496380. [DOI] [PubMed] [Google Scholar]
  57. Zhang X. F., Settleman J., Kyriakis J. M., Takeuchi-Suzuki E., Elledge S. J., Marshall M. S., Bruder J. T., Rapp U. R., Avruch J. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature. 1993 Jul 22;364(6435):308–313. doi: 10.1038/364308a0. [DOI] [PubMed] [Google Scholar]
  58. Zheng C. F., Ohmichi M., Saltiel A. R., Guan K. L. Growth factor induced MEK activation is primarily mediated by an activator different from c-raf. Biochemistry. 1994 May 10;33(18):5595–5599. doi: 10.1021/bi00184a031. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES