Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Mar;16(3):1220–1230. doi: 10.1128/mcb.16.3.1220

An RNA polymerase II promoter in the hsp70 locus of Trypanosoma brucei.

M G Lee 1
PMCID: PMC231104  PMID: 8622666

Abstract

To study of structure of RNA polymerase (pol) II transcription units a nd the influence of temperature on the regulation of gene expression in Trypanosoma brucei, and hsp70 intergenic region promoter was characterized. In T. brucei, the hsp70 locus contains, from 5' to 3', a cognate hsp70-related gene (gene 1) which is separated by about 6 kb of DNA from a cluster of five identical hsp70 genes (genes 2 to 6). Transcription proceeds on the entire 23-kb locus, and polycistronic transcription occurs in hsp70 genes 2 to 6. Transcription of hsp70 genes 2 to 6 is only moderately sensitive to UV irradiation, indicating that it cannot be driven by a single far-upstream promoter, which suggests that promoters could be located in the region close to the hsp70 coding region. Transient transformations demonstrated that sequences located upstream of hsp70 gene 2 and in the intergenic region between hsp70 genes 2 and 3 are able to direct transcription of the reporter gene, the chloramphenicol acetyltransferase (CAT) gene. The plasmid DNA driven by the hsp70 intergenic region promoter gave CAT activity approximately 85-fold above to background level. This is equivalent to approximately 1% of that derived from a CAT plasmid driven by the procyclic acidic repetitive protein gene promoter, which is controlled by RNA pol I. The hsp70 intergenic region promoter can drive alpha-amanitin-sensitive transcription at an internal position of the chromosome as well as an episome, suggesting that it is controlled by RNA pol II. However, this hsp70 intergenic region promoter, along with the 3' splice site and the 5' untranslated region of the hsp70 genes that controls the transcription of the reporter gene, cannot up-regulate the expression of the reporter gene during heat shock. This result is consistent with the previous observation that expression of the hsp70 genes in T. brucei is mainly controlled at the posttranscriptional level.

Full Text

The Full Text of this article is available as a PDF (732.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agabian N. Trans splicing of nuclear pre-mRNAs. Cell. 1990 Jun 29;61(7):1157–1160. doi: 10.1016/0092-8674(90)90674-4. [DOI] [PubMed] [Google Scholar]
  2. Alexandre S., Guyaux M., Murphy N. B., Coquelet H., Pays A., Steinert M., Pays E. Putative genes of a variant-specific antigen gene transcription unit in Trypanosoma brucei. Mol Cell Biol. 1988 Jun;8(6):2367–2378. doi: 10.1128/mcb.8.6.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben Amar M. F., Jefferies D., Pays A., Bakalara N., Kendall G., Pays E. The actin gene promoter of Trypanosoma brucei. Nucleic Acids Res. 1991 Nov 11;19(21):5857–5862. doi: 10.1093/nar/19.21.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berk A. J., Sharp P. A. Ultraviolet mapping of the adenovirus 2 early promoters. Cell. 1977 Sep;12(1):45–55. doi: 10.1016/0092-8674(77)90184-2. [DOI] [PubMed] [Google Scholar]
  5. Borst P. Discontinuous transcription and antigenic variation in trypanosomes. Annu Rev Biochem. 1986;55:701–732. doi: 10.1146/annurev.bi.55.070186.003413. [DOI] [PubMed] [Google Scholar]
  6. Brown S. D., Huang J., Van der Ploeg L. H. The promoter for the procyclic acidic repetitive protein (PARP) genes of Trypanosoma brucei shares features with RNA polymerase I promoters. Mol Cell Biol. 1992 Jun;12(6):2644–2652. doi: 10.1128/mcb.12.6.2644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brun R., Schönenberger Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979 Sep;36(3):289–292. [PubMed] [Google Scholar]
  8. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  9. Chung H. M., Lee M. G., Van der Ploeg L. H. RNA polymerase I-mediated protein-coding gene expression in Trypanosoma brucei. Parasitol Today. 1992 Dec;8(12):414–418. doi: 10.1016/0169-4758(92)90194-7. [DOI] [PubMed] [Google Scholar]
  10. Cully D. F., Ip H. S., Cross G. A. Coordinate transcription of variant surface glycoprotein genes and an expression site associated gene family in Trypanosoma brucei. Cell. 1985 Aug;42(1):173–182. doi: 10.1016/s0092-8674(85)80113-6. [DOI] [PubMed] [Google Scholar]
  11. Curotto de Lafaille M. A., Laban A., Wirth D. F. Gene expression in Leishmania: analysis of essential 5' DNA sequences. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2703–2707. doi: 10.1073/pnas.89.7.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ellenberger T. E., Beverley S. M. Multiple drug resistance and conservative amplification of the H region in Leishmania major. J Biol Chem. 1989 Sep 5;264(25):15094–15103. [PubMed] [Google Scholar]
  13. Gibson W. C., Swinkels B. W., Borst P. Post-transcriptional control of the differential expression of phosphoglycerate kinase genes in Trypanosoma brucei. J Mol Biol. 1988 May 20;201(2):315–325. doi: 10.1016/0022-2836(88)90140-4. [DOI] [PubMed] [Google Scholar]
  14. Glass D. J., Polvere R. I., Van der Ploeg L. H. Conserved sequences and transcription of the hsp70 gene family in Trypanosoma brucei. Mol Cell Biol. 1986 Dec;6(12):4657–4666. doi: 10.1128/mcb.6.12.4657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldberg S., Weber J., Darnell J. E., Jr The definition of a large viral transcription unit late in Ad2 infection of HeLa cells: mapping by effects of ultraviolet irradiation. Cell. 1977 Apr;10(4):617–621. doi: 10.1016/0092-8674(77)90094-0. [DOI] [PubMed] [Google Scholar]
  16. Gottesdiener K., Chung H. M., Brown S. D., Lee M. G., Van der Ploeg L. H. Characterization of VSG gene expression site promoters and promoter-associated DNA rearrangement events. Mol Cell Biol. 1991 May;11(5):2467–2480. doi: 10.1128/mcb.11.5.2467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gottesdiener K., Garciá-Anoveros J., Lee M. G., Van der Ploeg L. H. Chromosome organization of the protozoan Trypanosoma brucei. Mol Cell Biol. 1990 Nov;10(11):6079–6083. doi: 10.1128/mcb.10.11.6079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Imagawa M., Chiu R., Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987 Oct 23;51(2):251–260. doi: 10.1016/0092-8674(87)90152-8. [DOI] [PubMed] [Google Scholar]
  19. Imboden M. A., Laird P. W., Affolter M., Seebeck T. Transcription of the intergenic regions of the tubulin gene cluster of Trypanosoma brucei: evidence for a polycistronic transcription unit in a eukaryote. Nucleic Acids Res. 1987 Sep 25;15(18):7357–7368. doi: 10.1093/nar/15.18.7357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kooter J. M., Borst P. Alpha-amanitin-insensitive transcription of variant surface glycoprotein genes provides further evidence for discontinuous transcription in trypanosomes. Nucleic Acids Res. 1984 Dec 21;12(24):9457–9472. doi: 10.1093/nar/12.24.9457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kooter J. M., van der Spek H. J., Wagter R., d'Oliveira C. E., van der Hoeven F., Johnson P. J., Borst P. The anatomy and transcription of a telomeric expression site for variant-specific surface antigens in T. brucei. Cell. 1987 Oct 23;51(2):261–272. doi: 10.1016/0092-8674(87)90153-x. [DOI] [PubMed] [Google Scholar]
  22. Laird P. W., Kooter J. M., Loosbroek N., Borst P. Mature mRNAs of Trypanosoma brucei possess a 5' cap acquired by discontinuous RNA synthesis. Nucleic Acids Res. 1985 Jun 25;13(12):4253–4266. doi: 10.1093/nar/13.12.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LeBowitz J. H., Smith H. Q., Rusche L., Beverley S. M. Coupling of poly(A) site selection and trans-splicing in Leishmania. Genes Dev. 1993 Jun;7(6):996–1007. doi: 10.1101/gad.7.6.996. [DOI] [PubMed] [Google Scholar]
  24. Lee M. G. A foreign transcription unit in the inactivated VSG gene expression site of the procyclic form of Trypanosoma brucei and formation of large episomes in stably transformed trypanosomes. Mol Biochem Parasitol. 1995 Feb;69(2):223–238. doi: 10.1016/0166-6851(94)00186-q. [DOI] [PubMed] [Google Scholar]
  25. Lee M. G., Bihain B. E., Russell D. G., Deckelbaum R. J., Van der Ploeg L. H. Characterization of a cDNA encoding a cysteine-rich cell surface protein located in the flagellar pocket of the protozoan Trypanosoma brucei. Mol Cell Biol. 1990 Sep;10(9):4506–4517. doi: 10.1128/mcb.10.9.4506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee M. G. Heat shock does not increase the transcriptional efficiency of the Hsp 70 genes of Trypanosoma brucei. Exp Parasitol. 1995 Dec;81(4):608–613. doi: 10.1006/expr.1995.1156. [DOI] [PubMed] [Google Scholar]
  27. Lee M. G., Polvere R. I., Van der Ploeg L. H. Evidence for segmental gene conversion between a cognate hsp 70 gene and the temperature-sensitively transcribed hsp70 genes of Trypanosoma brucei. Mol Biochem Parasitol. 1990 Jun;41(2):213–220. doi: 10.1016/0166-6851(90)90184-n. [DOI] [PubMed] [Google Scholar]
  28. Lee M. G., Russell D. G., D'Alesandro P. A., Van der Ploeg L. H. Identification of membrane-associated proteins in Trypanosoma brucei encoding an internal, EARLRAEE amino acid repeat. J Biol Chem. 1994 Mar 18;269(11):8408–8415. [PubMed] [Google Scholar]
  29. Lee M. G., Van der Ploeg L. H. Frequent independent duplicative transpositions activate a single VSG gene. Mol Cell Biol. 1987 Jan;7(1):357–364. doi: 10.1128/mcb.7.1.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lee M. G., Van der Ploeg L. H. Transcription of the heat shock 70 locus in Trypanosoma brucei. Mol Biochem Parasitol. 1990 Jun;41(2):221–231. doi: 10.1016/0166-6851(90)90185-o. [DOI] [PubMed] [Google Scholar]
  31. Lee M. G., van der Ploeg L. H. The hygromycin B-resistance-encoding gene as a selectable marker for stable transformation of Trypanosoma brucei. Gene. 1991 Sep 15;105(2):255–257. doi: 10.1016/0378-1119(91)90159-9. [DOI] [PubMed] [Google Scholar]
  32. Lenardo M. J., Dorfman D. M., Reddy L. V., Donelson J. E. Characterization of the Trypanosoma brucei 5S ribosomal RNA gene and transcript: the 5S rRNA is a spliced-leader-independent species. Gene. 1985;35(1-2):131–141. doi: 10.1016/0378-1119(85)90165-9. [DOI] [PubMed] [Google Scholar]
  33. Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
  34. Muhich M. L., Boothroyd J. C. Polycistronic transcripts in trypanosomes and their accumulation during heat shock: evidence for a precursor role in mRNA synthesis. Mol Cell Biol. 1988 Sep;8(9):3837–3846. doi: 10.1128/mcb.8.9.3837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Murphy W. J., Watkins K. P., Agabian N. Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing: evidence for trans splicing. Cell. 1986 Nov 21;47(4):517–525. doi: 10.1016/0092-8674(86)90616-1. [DOI] [PubMed] [Google Scholar]
  36. Ralph D., Huang J., Van der Ploeg L. H. Physical identification of branched intron side-products of splicing in Trypanosoma brucei. EMBO J. 1988 Aug;7(8):2539–2545. doi: 10.1002/j.1460-2075.1988.tb03102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rudenko G., Bishop D., Gottesdiener K., Van der Ploeg L. H. Alpha-amanitin resistant transcription of protein coding genes in insect and bloodstream form Trypanosoma brucei. EMBO J. 1989 Dec 20;8(13):4259–4263. doi: 10.1002/j.1460-2075.1989.tb08611.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rudenko G., Le Blancq S., Smith J., Lee M. G., Rattray A., Van der Ploeg L. H. Procyclic acidic repetitive protein (PARP) genes located in an unusually small alpha-amanitin-resistant transcription unit: PARP promoter activity assayed by transient DNA transfection of Trypanosoma brucei. Mol Cell Biol. 1990 Jul;10(7):3492–3504. doi: 10.1128/mcb.10.7.3492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  40. Sherman D. R., Janz L., Hug M., Clayton C. Anatomy of the parp gene promoter of Trypanosoma brucei. EMBO J. 1991 Nov;10(11):3379–3386. doi: 10.1002/j.1460-2075.1991.tb04902.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sutton R. E., Boothroyd J. C. Evidence for trans splicing in trypanosomes. Cell. 1986 Nov 21;47(4):527–535. doi: 10.1016/0092-8674(86)90617-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thomashow L. S., Milhausen M., Rutter W. J., Agabian N. Tubulin genes are tandemly linked and clustered in the genome of trypanosoma brucei. Cell. 1983 Jan;32(1):35–43. doi: 10.1016/0092-8674(83)90494-4. [DOI] [PubMed] [Google Scholar]
  43. Topol J., Ruden D. M., Parker C. S. Sequences required for in vitro transcriptional activation of a Drosophila hsp 70 gene. Cell. 1985 Sep;42(2):527–537. doi: 10.1016/0092-8674(85)90110-2. [DOI] [PubMed] [Google Scholar]
  44. Tschudi C., Ullu E. Polygene transcripts are precursors to calmodulin mRNAs in trypanosomes. EMBO J. 1988 Feb;7(2):455–463. doi: 10.1002/j.1460-2075.1988.tb02833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Van der Ploeg L. H., Bernards A., Rijsewijk F. A., Borst P. Characterization of the DNA duplication-transposition that controls the expression of two genes for variant surface glycoproteins in Trypanosoma brucei. Nucleic Acids Res. 1982 Jan 22;10(2):593–609. doi: 10.1093/nar/10.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Van der Ploeg L. H., Smith C. L., Polvere R. I., Gottesdiener K. M. Improved separation of chromosome-sized DNA from Trypanosoma brucei, stock 427-60. Nucleic Acids Res. 1989 Apr 25;17(8):3217–3227. doi: 10.1093/nar/17.8.3217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wong S., Morales T. H., Neigel J. E., Campbell D. A. Genomic and transcriptional linkage of the genes for calmodulin, EF-hand 5 protein, and ubiquitin extension protein 52 in Trypanosoma brucei. Mol Cell Biol. 1993 Jan;13(1):207–216. doi: 10.1128/mcb.13.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wu Y., Deford J., Benjamin R., Lee M. G., Ruben L. The gene family of EF-hand calcium-binding proteins from the flagellum of Trypanosoma brucei. Biochem J. 1994 Dec 15;304(Pt 3):833–841. doi: 10.1042/bj3040833. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES