Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 May;16(5):2015–2024. doi: 10.1128/mcb.16.5.2015

Regulation of the chicken ovalbumin gene by estrogen and corticosterone requires a novel DNA element that binds a labile protein, Chirp-1.

D M Dean 1, P S Jones 1, M M Sanders 1
PMCID: PMC231188  PMID: 8628267

Abstract

Because induction of the chicken ovalbumin (Ov) gene by steroid hormones requires concomitant protein synthesis, efforts have focused on defining the binding site in the Ov gene for a labile transcription factor. Previous gel mobility shift studies identified one such site in the steroid-dependent regulatory element (SDRE) between -900 and -853. To ascertain whether estrogen and glucocorticoid affect the binding of this labile protein, genomic footprinting of the Ov gene was done by treating primary oviduct cell cultures with dimethyl sulfate. Several alterations that include steroid-dependent protection of guanine residues -889 and -885 and hypersensitivity of adenine residues -892 and -865 were observed. Of particular importance, the in vivo footprinting data are corroborated by two functional studies, one with linker-scanning mutations and the other with point mutations. Ten-base-pair linker-scanning mutations between -900 and -878 severely reduced the induction by estrogen and glucocorticoid. Likewise, point mutations of the protected guanine residues profoundly attenuated the response to these steroid hormones. In addition, in vitro binding activity correlated with in vivo functional activity. For example, mutant A4e shows no transcriptional activity in response to steroid hormones, and a corresponding oligomer does not bind protein in vitro. In contrast, mutant A4c is fully active in both contexts. These data support the contention that the ovalbumin gene is regulated by a steroid hormone-induced transcriptional cascade that culminates in the binding of chicken ovalbumin induced regulatory protein or protein complex (Chirp-I) to a DNA element from -891 to -878 in the SDRE.

Full Text

The Full Text of this article is available as a PDF (380.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addison W. R., Kurtz D. T. Identification of nuclear proteins that bind to the glucocorticoid regulatory region of a rat alpha 2u-globulin gene. J Biol Chem. 1989 Dec 25;264(36):21891–21895. [PubMed] [Google Scholar]
  2. Adler A. J., Scheller A., Hoffman Y., Robins D. M. Multiple components of a complex androgen-dependent enhancer. Mol Endocrinol. 1991 Nov;5(11):1587–1596. doi: 10.1210/mend-5-11-1587. [DOI] [PubMed] [Google Scholar]
  3. Archer T. K., Cordingley M. G., Wolford R. G., Hager G. L. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol Cell Biol. 1991 Feb;11(2):688–698. doi: 10.1128/mcb.11.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ashburner M. Puffs, genes, and hormones revisited. Cell. 1990 Apr 6;61(1):1–3. doi: 10.1016/0092-8674(90)90205-s. [DOI] [PubMed] [Google Scholar]
  5. Briehl M. M., Flomerfelt F. A., Wu X. P., Miesfeld R. L. Transcriptional analyses of steroid-regulated gene networks. Mol Endocrinol. 1990 Feb;4(2):287–294. doi: 10.1210/mend-4-2-287. [DOI] [PubMed] [Google Scholar]
  6. Cardinaux J. R., Chapel S., Wahli W. Complex organization of CTF/NF-I, C/EBP, and HNF3 binding sites within the promoter of the liver-specific vitellogenin gene. J Biol Chem. 1994 Dec 30;269(52):32947–32956. [PubMed] [Google Scholar]
  7. Danesch U., Gloss B., Schmid W., Schütz G., Schüle R., Renkawitz R. Glucocorticoid induction of the rat tryptophan oxygenase gene is mediated by two widely separated glucocorticoid-responsive elements. EMBO J. 1987 Mar;6(3):625–630. doi: 10.1002/j.1460-2075.1987.tb04800.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dey A., Minucci S., Ozato K. Ligand-dependent occupancy of the retinoic acid receptor beta 2 promoter in vivo. Mol Cell Biol. 1994 Dec;14(12):8191–8201. doi: 10.1128/mcb.14.12.8191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fink K. L., Wieben E. D., Woloschak G. E., Spelsberg T. C. Rapid regulation of c-myc protooncogene expression by progesterone in the avian oviduct. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1796–1800. doi: 10.1073/pnas.85.6.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fletcher J. C., Thummel C. S. The Drosophila E74 gene is required for the proper stage- and tissue-specific transcription of ecdysone-regulated genes at the onset of metamorphosis. Development. 1995 May;121(5):1411–1421. doi: 10.1242/dev.121.5.1411. [DOI] [PubMed] [Google Scholar]
  11. Gannon F., O'Hare K., Perrin F., LePennec J. P., Benoist C., Cochet M., Breathnach R., Royal A., Garapin A., Cami B. Organisation and sequences at the 5' end of a cloned complete ovalbumin gene. Nature. 1979 Mar 29;278(5703):428–434. doi: 10.1038/278428a0. [DOI] [PubMed] [Google Scholar]
  12. Garrity P. A., Wold B. J. Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1021–1025. doi: 10.1073/pnas.89.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gotoh T., Haraguchi Y., Takiguchi M., Mori M. The delayed glucocorticoid-responsive and hepatoma cell-selective enhancer of the rat arginase gene is located around intron 7. J Biochem. 1994 Apr;115(4):778–788. doi: 10.1093/oxfordjournals.jbchem.a124409. [DOI] [PubMed] [Google Scholar]
  14. Grange T., Roux J., Rigaud G., Pictet R. Cell-type specific activity of two glucocorticoid responsive units of rat tyrosine aminotransferase gene is associated with multiple binding sites for C/EBP and a novel liver-specific nuclear factor. Nucleic Acids Res. 1991 Jan 11;19(1):131–139. doi: 10.1093/nar/19.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hyder S. M., Stancel G. M., Loose-Mitchell D. S. Steroid hormone-induced expression of oncogene encoded nuclear proteins. Crit Rev Eukaryot Gene Expr. 1994;4(1):55–116. doi: 10.1615/critreveukargeneexpr.v4.i1.30. [DOI] [PubMed] [Google Scholar]
  16. Ing N. H., Beekman J. M., Tsai S. Y., Tsai M. J., O'Malley B. W. Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J Biol Chem. 1992 Sep 5;267(25):17617–17623. [PubMed] [Google Scholar]
  17. Kato S., Tora L., Yamauchi J., Masushige S., Bellard M., Chambon P. A far upstream estrogen response element of the ovalbumin gene contains several half-palindromic 5'-TGACC-3' motifs acting synergistically. Cell. 1992 Feb 21;68(4):731–742. doi: 10.1016/0092-8674(92)90148-6. [DOI] [PubMed] [Google Scholar]
  18. Kaye J. S., Bellard M., Dretzen G., Bellard F., Chambon P. A close association between sites of DNase I hypersensitivity and sites of enhanced cleavage by micrococcal nuclease in the 5'-flanking region of the actively transcribed ovalbumin gene. EMBO J. 1984 May;3(5):1137–1144. doi: 10.1002/j.1460-2075.1984.tb01942.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klein E. S., DiLorenzo D., Posseckert G., Beato M., Ringold G. M. Sequences downstream of the glucocorticoid regulatory element mediate cycloheximide inhibition of steroid induced expression from the rat alpha 1-acid glycoprotein promoter: evidence for a labile transcription factor. Mol Endocrinol. 1988 Dec;2(12):1343–1351. doi: 10.1210/mend-2-12-1343. [DOI] [PubMed] [Google Scholar]
  20. Landers J. P., Spelsberg T. C. New concepts in steroid hormone action: transcription factors, proto-oncogenes, and the cascade model for steroid regulation of gene expression. Crit Rev Eukaryot Gene Expr. 1992;2(1):19–63. [PubMed] [Google Scholar]
  21. Li S., Rosen J. M. Glucocorticoid regulation of rat whey acidic protein gene expression involves hormone-induced alterations of chromatin structure in the distal promoter region. Mol Endocrinol. 1994 Oct;8(10):1328–1335. doi: 10.1210/mend.8.10.7854350. [DOI] [PubMed] [Google Scholar]
  22. Lu Q., Wallrath L. L., Granok H., Elgin S. C. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene. Mol Cell Biol. 1993 May;13(5):2802–2814. doi: 10.1128/mcb.13.5.2802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McKnight G. S., Palmiter R. D. Transcriptional regulation of the ovalbumin and conalbumin genes by steroid hormones in chick oviduct. J Biol Chem. 1979 Sep 25;254(18):9050–9058. [PubMed] [Google Scholar]
  24. McPherson C. E., Shim E. Y., Friedman D. S., Zaret K. S. An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell. 1993 Oct 22;75(2):387–398. doi: 10.1016/0092-8674(93)80079-t. [DOI] [PubMed] [Google Scholar]
  25. Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
  26. Nordstrom L. A., Dean D. M., Sanders M. M. A complex array of double-stranded and single-stranded DNA-binding proteins mediates induction of the ovalbumin gene by steroid hormones. J Biol Chem. 1993 Jun 25;268(18):13193–13202. [PubMed] [Google Scholar]
  27. Overdier D. G., Porcella A., Costa R. H. The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol. 1994 Apr;14(4):2755–2766. doi: 10.1128/mcb.14.4.2755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Park H. M., Okumura J., Muramatsu T. Modulation of transcriptional activity of the chicken ovalbumin gene promoter in primary cultures of chicken oviduct cells: effects of putative regulatory elements in the 5'-flanking region. Biochem Mol Biol Int. 1995 Jul;36(4):811–816. [PubMed] [Google Scholar]
  29. Philipsen J. N., Hennis B. C., Ab G. In vivo footprinting of the estrogen-inducible vitellogenin II gene from chicken. Nucleic Acids Res. 1988 Oct 25;16(20):9663–9676. doi: 10.1093/nar/16.20.9663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rories C., Lau C. K., Fink K., Spelsberg T. C. Rapid inhibition of c-myc gene expression by a glucocorticoid in the avian oviduct. Mol Endocrinol. 1989 Jun;3(6):991–1001. doi: 10.1210/mend-3-6-991. [DOI] [PubMed] [Google Scholar]
  31. Roux J., Pictet R., Grange T. Hepatocyte nuclear factor 3 determines the amplitude of the glucocorticoid response of the rat tyrosine aminotransferase gene. DNA Cell Biol. 1995 May;14(5):385–396. doi: 10.1089/dna.1995.14.385. [DOI] [PubMed] [Google Scholar]
  32. Rozek D., Pfeifer G. P. In vivo protein-DNA interactions at the c-jun promoter: preformed complexes mediate the UV response. Mol Cell Biol. 1993 Sep;13(9):5490–5499. doi: 10.1128/mcb.13.9.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanders M. M., McKnight G. S. Chicken egg white genes: multihormonal regulation in a primary cell culture system. Endocrinology. 1985 Jan;116(1):398–405. doi: 10.1210/endo-116-1-398. [DOI] [PubMed] [Google Scholar]
  34. Sanders M. M., McKnight G. S. Positive and negative regulatory elements control the steroid-responsive ovalbumin promoter. Biochemistry. 1988 Aug 23;27(17):6550–6557. doi: 10.1021/bi00417a053. [DOI] [PubMed] [Google Scholar]
  35. Scarlett C. O., Robins D. M. In vivo footprinting of an androgen-dependent enhancer reveals an accessory element integral to hormonal response. Mol Endocrinol. 1995 Apr;9(4):413–423. doi: 10.1210/mend.9.4.7659085. [DOI] [PubMed] [Google Scholar]
  36. Schweers L. A., Frank D. E., Weigel N. L., Sanders M. M. The steroid-dependent regulatory element in the ovalbumin gene does not function as a typical steroid response element. J Biol Chem. 1990 May 5;265(13):7590–7595. [PubMed] [Google Scholar]
  37. Schweers L. A., Sanders M. M. A protein with a binding specificity similar to NF-kappa B binds to a steroid-dependent regulatory element in the ovalbumin gene. J Biol Chem. 1991 Jun 5;266(16):10490–10497. [PubMed] [Google Scholar]
  38. Seal S. N., Davis D. L., Burch J. B. Mutational studies reveal a complex set of positive and negative control elements within the chicken vitellogenin II promoter. Mol Cell Biol. 1991 May;11(5):2704–2717. doi: 10.1128/mcb.11.5.2704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Subramaniam M., Harris S. A., Rasmussen K., Spelsberg T. C. Rapid down-regulation of c-jun protooncogene transcription by progesterone in the avian oviduct. Endocrinology. 1993 Nov;133(5):2049–2054. doi: 10.1210/endo.133.5.8404652. [DOI] [PubMed] [Google Scholar]
  40. Tjian R., Maniatis T. Transcriptional activation: a complex puzzle with few easy pieces. Cell. 1994 Apr 8;77(1):5–8. doi: 10.1016/0092-8674(94)90227-5. [DOI] [PubMed] [Google Scholar]
  41. Truss M., Bartsch J., Schelbert A., Haché R. J., Beato M. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 1995 Apr 18;14(8):1737–1751. doi: 10.1002/j.1460-2075.1995.tb07163.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Urness L. D., Thummel C. S. Molecular interactions within the ecdysone regulatory hierarchy: DNA binding properties of the Drosophila ecdysone-inducible E74A protein. Cell. 1990 Oct 5;63(1):47–61. doi: 10.1016/0092-8674(90)90287-o. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES