Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 May;16(5):2496–2503. doi: 10.1128/mcb.16.5.2496

Identification of neurofibromin mutants that exhibit allele specificity or increased Ras affinity resulting in suppression of activated ras alleles.

P Morcos 1, N Thapar 1, N Tusneem 1, D Stacey 1, F Tamanoi 1
PMCID: PMC231238  PMID: 8628317

Abstract

Neurofibromin plays a critical role in the downregulation of Ras proteins in neurons and Schwann cells. Thus, the ability of neurofibromin to interact with Ras is crucial for its function, as mutations in NF1 that abolish this interaction fail to maintain function. To investigate the neurofibromin-Ras interaction in a systematic manner, we have carried out a yeast two-hybrid screen using a mutant of H-ras, H-rasD92K, defective for interaction with the GTPase-activated protein-related domain (GRD) of NF1. Two screens of a randomly mutagenized NF1-GRD library led to the identification of seven novel NF1 mutants. Characterization of the NF1-GRD mutants revealed that one class of mutants are allele specific for H-raSD92K. These mutants exhibit increased affinity for H-raSD92K and significantly reduced affinity for wild-type H-ras protein. Furthermore, they do not interact with another H-ras mutant defective for interaction with GTPase-activating proteins. Another class of mutants are high-affinity mutants which exhibit dramatically increased affinity for both wild-type and mutant forms of Ras. They also exhibit a striking ability to suppress the heat shock sensitive traits of activated RAS2G19v in yeast cells. Five mutations cluster within a region encompassing residues 1391 to 1436 (region II). Three NF1 patient mutations have previously been identified in this region. Two mutations that we identified occur in a region encompassing residues 1262 to 1276 (region I). Combining high-affinity mutations from both regions results in even greater affinity for Ras. These results demonstrate that two distinct regions of NF1-GRD are involved in the Ras interaction and that single amino acid changes can affect NF1's affinity for Ras.

Full Text

The Full Text of this article is available as a PDF (368.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballester R., Marchuk D., Boguski M., Saulino A., Letcher R., Wigler M., Collins F. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990 Nov 16;63(4):851–859. doi: 10.1016/0092-8674(90)90151-4. [DOI] [PubMed] [Google Scholar]
  2. Basu T. N., Gutmann D. H., Fletcher J. A., Glover T. W., Collins F. S., Downward J. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature. 1992 Apr 23;356(6371):713–715. doi: 10.1038/356713a0. [DOI] [PubMed] [Google Scholar]
  3. Brtva T. R., Drugan J. K., Ghosh S., Terrell R. S., Campbell-Burk S., Bell R. M., Der C. J. Two distinct Raf domains mediate interaction with Ras. J Biol Chem. 1995 Apr 28;270(17):9809–9812. doi: 10.1074/jbc.270.17.9809. [DOI] [PubMed] [Google Scholar]
  4. Chien C. T., Bartel P. L., Sternglanz R., Fields S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9578–9582. doi: 10.1073/pnas.88.21.9578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Créchet J. B., Poullet P., Camonis J., Jacquet M., Parmeggiani A. Different kinetic properties of the two mutants, RAS2Ile152 and RAS2Val19, that suppress the CDC25 requirement in RAS/adenylate cyclase pathway in Saccharomyces cerevisiae. J Biol Chem. 1990 Jan 25;265(3):1563–1568. [PubMed] [Google Scholar]
  6. DeClue J. E., Papageorge A. G., Fletcher J. A., Diehl S. R., Ratner N., Vass W. C., Lowy D. R. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell. 1992 Apr 17;69(2):265–273. doi: 10.1016/0092-8674(92)90407-4. [DOI] [PubMed] [Google Scholar]
  7. Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., Lee W. H., Elledge S. J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993 Apr;7(4):555–569. doi: 10.1101/gad.7.4.555. [DOI] [PubMed] [Google Scholar]
  8. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  9. Fridman M., Tikoo A., Varga M., Murphy A., Nur-E-Kamal M. S., Maruta H. The minimal fragments of c-Raf-1 and NF1 that can suppress v-Ha-Ras-induced malignant phenotype. J Biol Chem. 1994 Dec 2;269(48):30105–30108. [PubMed] [Google Scholar]
  10. Gibbs J. B., Sigal I. S., Poe M., Scolnick E. M. Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5704–5708. doi: 10.1073/pnas.81.18.5704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gutmann D. H., Boguski M., Marchuk D., Wigler M., Collins F. S., Ballester R. Analysis of the neurofibromatosis type 1 (NF1) GAP-related domain by site-directed mutagenesis. Oncogene. 1993 Mar;8(3):761–769. [PubMed] [Google Scholar]
  12. Hettich L., Marshall M. Structural analysis of the Ras GTPase activating protein catalytic domain by semirandom mutagenesis: implications for a mechanism of interaction with Ras-GTP. Cancer Res. 1994 Oct 15;54(20):5438–5444. [PubMed] [Google Scholar]
  13. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  14. Johnson M. R., DeClue J. E., Felzmann S., Vass W. C., Xu G., White R., Lowy D. R. Neurofibromin can inhibit Ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Mol Cell Biol. 1994 Jan;14(1):641–645. doi: 10.1128/mcb.14.1.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim H. A., Rosenbaum T., Marchionni M. A., Ratner N., DeClue J. E. Schwann cells from neurofibromin deficient mice exhibit activation of p21ras, inhibition of cell proliferation and morphological changes. Oncogene. 1995 Jul 20;11(2):325–335. [PubMed] [Google Scholar]
  16. Krengel U., Schlichting I., Scherer A., Schumann R., Frech M., John J., Kabsch W., Pai E. F., Wittinghofer A. Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell. 1990 Aug 10;62(3):539–548. doi: 10.1016/0092-8674(90)90018-a. [DOI] [PubMed] [Google Scholar]
  17. Li Y., Bollag G., Clark R., Stevens J., Conroy L., Fults D., Ward K., Friedman E., Samowitz W., Robertson M. Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell. 1992 Apr 17;69(2):275–281. doi: 10.1016/0092-8674(92)90408-5. [DOI] [PubMed] [Google Scholar]
  18. Martin G. A., Viskochil D., Bollag G., McCabe P. C., Crosier W. J., Haubruck H., Conroy L., Clark R., O'Connell P., Cawthon R. M. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell. 1990 Nov 16;63(4):843–849. doi: 10.1016/0092-8674(90)90150-d. [DOI] [PubMed] [Google Scholar]
  19. McGlade J., Brunkhorst B., Anderson D., Mbamalu G., Settleman J., Dedhar S., Rozakis-Adcock M., Chen L. B., Pawson T. The N-terminal region of GAP regulates cytoskeletal structure and cell adhesion. EMBO J. 1993 Aug;12(8):3073–3081. doi: 10.1002/j.1460-2075.1993.tb05976.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mitsuzawa H., Esson K., Tamanoi F. Mutant farnesyltransferase beta subunit of Saccharomyces cerevisiae that can substitute for geranylgeranyltransferase type I beta subunit. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1704–1708. doi: 10.1073/pnas.92.5.1704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miura K., Inoue Y., Nakamori H., Iwai S., Ohtsuka E., Ikehara M., Noguchi S., Nishimura S. Synthesis and expression of a synthetic gene for the activated human c-Ha-ras protein. Jpn J Cancer Res. 1986 Jan;77(1):45–51. [PubMed] [Google Scholar]
  22. Nakafuku M., Nagamine M., Ohtoshi A., Tanaka K., Toh-e A., Kaziro Y. Suppression of oncogenic Ras by mutant neurofibromatosis type 1 genes with single amino acid substitutions. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6706–6710. doi: 10.1073/pnas.90.14.6706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nur-E-Kamal M. S., Varga M., Maruta H. The GTPase-activating NF1 fragment of 91 amino acids reverses v-Ha-Ras-induced malignant phenotype. J Biol Chem. 1993 Oct 25;268(30):22331–22337. [PubMed] [Google Scholar]
  24. Poullet P., Lin B., Esson K., Tamanoi F. Functional significance of lysine 1423 of neurofibromin and characterization of a second site suppressor which rescues mutations at this residue and suppresses RAS2Val-19-activated phenotypes. Mol Cell Biol. 1994 Jan;14(1):815–821. doi: 10.1128/mcb.14.1.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Poullet P., Tamanoi F. Use of yeast two-hybrid system to evaluate Ras interactions with neurofibromin-GTPase-activating protein. Methods Enzymol. 1995;255:488–497. doi: 10.1016/s0076-6879(95)55051-8. [DOI] [PubMed] [Google Scholar]
  26. Privé G. G., Milburn M. V., Tong L., de Vos A. M., Yamaizumi Z., Nishimura S., Kim S. H. X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3649–3653. doi: 10.1073/pnas.89.8.3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Purandare S. M., Lanyon W. G., Connor J. M. Characterisation of inherited and sporadic mutations in neurofibromatosis type-1. Hum Mol Genet. 1994 Jul;3(7):1109–1115. doi: 10.1093/hmg/3.7.1109. [DOI] [PubMed] [Google Scholar]
  28. Rubinfeld B., Wong G., Bekesi E., Wood A., Heimer E., McCormick F., Polakis P. A synthetic peptide corresponding to a sequence in the GTPase activating protein inhibits p21ras stimulation and promotes guanine nucleotide exchange. Int J Pept Protein Res. 1991 Jul;38(1):47–53. doi: 10.1111/j.1399-3011.1991.tb01408.x. [DOI] [PubMed] [Google Scholar]
  29. Skinner R. H., Bradley S., Brown A. L., Johnson N. J., Rhodes S., Stammers D. K., Lowe P. N. Use of the Glu-Glu-Phe C-terminal epitope for rapid purification of the catalytic domain of normal and mutant ras GTPase-activating proteins. J Biol Chem. 1991 Aug 5;266(22):14163–14166. [PubMed] [Google Scholar]
  30. Stone J. C., Colleton M., Bottorff D. Effector domain mutations dissociate p21ras effector function and GTPase-activating protein interaction. Mol Cell Biol. 1993 Dec;13(12):7311–7320. doi: 10.1128/mcb.13.12.7311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tanaka K., Wood D. R., Lin B. K., Khalil M., Tamanoi F., Cannon J. F. A dominant activating mutation in the effector region of RAS abolishes IRA2 sensitivity. Mol Cell Biol. 1992 Feb;12(2):631–637. doi: 10.1128/mcb.12.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Toda T., Uno I., Ishikawa T., Powers S., Kataoka T., Broek D., Cameron S., Broach J., Matsumoto K., Wigler M. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell. 1985 Jan;40(1):27–36. doi: 10.1016/0092-8674(85)90305-8. [DOI] [PubMed] [Google Scholar]
  33. Vogel K. S., Brannan C. I., Jenkins N. A., Copeland N. G., Parada L. F. Loss of neurofibromin results in neurotrophin-independent survival of embryonic sensory and sympathetic neurons. Cell. 1995 Sep 8;82(5):733–742. doi: 10.1016/0092-8674(95)90470-0. [DOI] [PubMed] [Google Scholar]
  34. Wang Y., Boguski M., Riggs M., Rodgers L., Wigler M. sar1, a gene from Schizosaccharomyces pombe encoding a protein that regulates ras1. Cell Regul. 1991 Jun;2(6):453–465. doi: 10.1091/mbc.2.6.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wilson B. A., Khalil M., Tamanoi F., Cannon J. F. New activated RAS2 mutations identified in Saccharomyces cerevisiae. Oncogene. 1993 Dec;8(12):3441–3445. [PubMed] [Google Scholar]
  36. Wood D. R., Poullet P., Wilson B. A., Khalil M., Tanaka K., Cannon J. F., Tamanoi F. Biochemical characterization of yeast RAS2 mutants reveals a new region of ras protein involved in the interaction with GTPase-activating proteins. J Biol Chem. 1994 Feb 18;269(7):5322–5327. [PubMed] [Google Scholar]
  37. Xu G. F., Lin B., Tanaka K., Dunn D., Wood D., Gesteland R., White R., Weiss R., Tamanoi F. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell. 1990 Nov 16;63(4):835–841. doi: 10.1016/0092-8674(90)90149-9. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES