Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Jun;16(6):2736–2743. doi: 10.1128/mcb.16.6.2736

Cell-specific transcriptional regulation and reactivation of galectin-1 gene expression are controlled by DNA methylation of the promoter region.

G Benvenuto 1, M L Carpentieri 1, P Salvatore 1, L Cindolo 1, C B Bruni 1, L Chiariotti 1
PMCID: PMC231264  PMID: 8649381

Abstract

The galectin-1 gene is developmentally regulated gene whose activity is strongly modulated during cell differentiation and transformation. We have previously shown that galectin-1 promoter constructs are highly active when transiently transfected in cells both expressing and not expressing the endogenous gene and that the basal activity is determined by a small region encompassing the transcription start site (from positions -50 to +50). We have now investigated the role of DNA methylation in galectin-1 gene expression. Southern blot analysis with HpaII and MspI endonucleases and sodium bisulfite analysis of genomic DNA from expressing and nonexpressing cell lines and cell hybrids showed a close correlation between gene activity and demethylation of the 5' region of the galectin-1 gene. We found that the galectin-1 promoter region is fully methylated, at every CpG site on both strands, in nonexpressing differentiated rat liver (FAO) and thyroid (PC C13) cells and unmethylated in the expressing undifferentiated liver (BRL3A) and thyroid transformed (PC myc/raf) cell lines. In addition, reactivation of the silent FAO alleles in FAO-human osteosarcoma (143tk-) hybrid cells is accompanied by a complete demethylation of the promoter region. Finally, when galectin-1 chloramphenicol acetyltransferase (CAT) promoter constructs were methylated in vitro by SssI methylase at every cytosine residue of the CpG doublets and transfected into mouse fibroblasts, the transcription of the CAT reporter gene was strongly inhibited.

Full Text

The Full Text of this article is available as a PDF (722.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antequera F., Boyes J., Bird A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell. 1990 Aug 10;62(3):503–514. doi: 10.1016/0092-8674(90)90015-7. [DOI] [PubMed] [Google Scholar]
  2. Barondes S. H., Castronovo V., Cooper D. N., Cummings R. D., Drickamer K., Feizi T., Gitt M. A., Hirabayashi J., Hughes C., Kasai K. Galectins: a family of animal beta-galactoside-binding lectins. Cell. 1994 Feb 25;76(4):597–598. doi: 10.1016/0092-8674(94)90498-7. [DOI] [PubMed] [Google Scholar]
  3. Barondes S. H., Cooper D. N., Gitt M. A., Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994 Aug 19;269(33):20807–20810. [PubMed] [Google Scholar]
  4. Barton D. E., Francke U. Activation of human alpha 1-antitrypsin genes in rat hepatoma x human fibroblast hybrid cell lines is correlated with demethylation. Somat Cell Mol Genet. 1987 Nov;13(6):635–644. doi: 10.1007/BF01534484. [DOI] [PubMed] [Google Scholar]
  5. Baum L. G., Pang M., Perillo N. L., Wu T., Delegeane A., Uittenbogaart C. H., Fukuda M., Seilhamer J. J. Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med. 1995 Mar 1;181(3):877–887. doi: 10.1084/jem.181.3.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyes J., Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell. 1991 Mar 22;64(6):1123–1134. doi: 10.1016/0092-8674(91)90267-3. [DOI] [PubMed] [Google Scholar]
  7. Chiariotti L., Benvenuto G., Salvatore P., Veneziani B. M., Villone G., Fusco A., Russo T., Bruni C. B. Expression of the soluble lectin L-14 gene is induced by TSH in thyroid cells and suppressed by retinoic acid in transformed neural cells. Biochem Biophys Res Commun. 1994 Mar 15;199(2):540–546. doi: 10.1006/bbrc.1994.1262. [DOI] [PubMed] [Google Scholar]
  8. Chiariotti L., Benvenuto G., Zarrilli R., Rossi E., Salvatore P., Colantuoni V., Bruni C. B. Activation of the galectin-1 (L-14-I) gene from nonexpressing differentiated cells by fusion with undifferentiated and tumorigenic cells. Cell Growth Differ. 1994 Jul;5(7):769–775. [PubMed] [Google Scholar]
  9. Chiariotti L., Berlingieri M. T., Battaglia C., Benvenuto G., Martelli M. L., Salvatore P., Chiappetta G., Bruni C. B., Fusco A. Expression of galectin-1 in normal human thyroid gland and in differentiated and poorly differentiated thyroid tumors. Int J Cancer. 1995 Jun 22;64(3):171–175. doi: 10.1002/ijc.2910640305. [DOI] [PubMed] [Google Scholar]
  10. Chiariotti L., Berlingieri M. T., De Rosa P., Battaglia C., Berger N., Bruni C. B., Fusco A. Increased expression of the negative growth factor, galactoside-binding protein, gene in transformed thyroid cells and in human thyroid carcinomas. Oncogene. 1992 Dec;7(12):2507–2511. [PubMed] [Google Scholar]
  11. Chiariotti L., Wells V., Bruni C. B., Mallucci L. Structure and expression of the negative growth factor mouse beta-galactoside binding protein gene. Biochim Biophys Acta. 1991 May 2;1089(1):54–60. doi: 10.1016/0167-4781(91)90084-y. [DOI] [PubMed] [Google Scholar]
  12. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  13. Clark S. J., Harrison J., Paul C. L., Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994 Aug 11;22(15):2990–2997. doi: 10.1093/nar/22.15.2990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cooper D. N., Massa S. M., Barondes S. H. Endogenous muscle lectin inhibits myoblast adhesion to laminin. J Cell Biol. 1991 Dec;115(5):1437–1448. doi: 10.1083/jcb.115.5.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Counts J. L., Goodman J. I. Alterations in DNA methylation may play a variety of roles in carcinogenesis. Cell. 1995 Oct 6;83(1):13–15. doi: 10.1016/0092-8674(95)90228-7. [DOI] [PubMed] [Google Scholar]
  16. Deschatrette J., Moore E. E., Dubois M., Weiss M. C. Dedifferentiated variants of a rat hepatoma:reversion analysis. Cell. 1980 Apr;19(4):1043–1051. doi: 10.1016/0092-8674(80)90095-1. [DOI] [PubMed] [Google Scholar]
  17. Dwek R. A. Glycobiology: more functions for oligosaccharides. Science. 1995 Sep 1;269(5228):1234–1235. doi: 10.1126/science.7652569. [DOI] [PubMed] [Google Scholar]
  18. Eden S., Cedar H. Role of DNA methylation in the regulation of transcription. Curr Opin Genet Dev. 1994 Apr;4(2):255–259. doi: 10.1016/s0959-437x(05)80052-8. [DOI] [PubMed] [Google Scholar]
  19. Feinberg A. P., Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983 Jan 6;301(5895):89–92. doi: 10.1038/301089a0. [DOI] [PubMed] [Google Scholar]
  20. Frommer M., McDonald L. E., Millar D. S., Collis C. M., Watt F., Grigg G. W., Molloy P. L., Paul C. L. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1827–1831. doi: 10.1073/pnas.89.5.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fusco A., Berlingieri M. T., Di Fiore P. P., Portella G., Grieco M., Vecchio G. One- and two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. Mol Cell Biol. 1987 Sep;7(9):3365–3370. doi: 10.1128/mcb.7.9.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gabius H. J. Endogenous lectins in tumors and the immune system. Cancer Invest. 1987;5(1):39–46. doi: 10.3109/07357908709020305. [DOI] [PubMed] [Google Scholar]
  23. Gitt M. A., Barondes S. H. Genomic sequence and organization of two members of a human lectin gene family. Biochemistry. 1991 Jan 8;30(1):82–89. doi: 10.1021/bi00215a013. [DOI] [PubMed] [Google Scholar]
  24. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gourdeau H., Fournier R. E. Genetic analysis of mammalian cell differentiation. Annu Rev Cell Biol. 1990;6:69–94. doi: 10.1146/annurev.cb.06.110190.000441. [DOI] [PubMed] [Google Scholar]
  26. Graessmann M., Graessmann A., Wagner H., Werner E., Simon D. Complete DNA methylation does not prevent polyoma and simian virus 40 virus early gene expression. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6470–6474. doi: 10.1073/pnas.80.21.6470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Irimura T., Matsushita Y., Sutton R. C., Carralero D., Ohannesian D. W., Cleary K. R., Ota D. M., Nicolson G. L., Lotan R. Increased content of an endogenous lactose-binding lectin in human colorectal carcinoma progressed to metastatic stages. Cancer Res. 1991 Jan 1;51(1):387–393. [PubMed] [Google Scholar]
  28. Jones P. A., Buckley J. D. The role of DNA methylation in cancer. Adv Cancer Res. 1990;54:1–23. doi: 10.1016/s0065-230x(08)60806-4. [DOI] [PubMed] [Google Scholar]
  29. Keshet I., Lieman-Hurwitz J., Cedar H. DNA methylation affects the formation of active chromatin. Cell. 1986 Feb 28;44(4):535–543. doi: 10.1016/0092-8674(86)90263-1. [DOI] [PubMed] [Google Scholar]
  30. Kudo S., Fukuda M. A short, novel promoter sequence confers the expression of human leukosialin, a major sialoglycoprotein on leukocytes. J Biol Chem. 1991 May 5;266(13):8483–8489. [PubMed] [Google Scholar]
  31. Kudo S., Fukuda M. Tissue-specific transcriptional regulation of human leukosialin (CD43) gene is achieved by DNA methylation. J Biol Chem. 1995 Jun 2;270(22):13298–13302. doi: 10.1074/jbc.270.22.13298. [DOI] [PubMed] [Google Scholar]
  32. Laird P. W., Jackson-Grusby L., Fazeli A., Dickinson S. L., Jung W. E., Li E., Weinberg R. A., Jaenisch R. Suppression of intestinal neoplasia by DNA hypomethylation. Cell. 1995 Apr 21;81(2):197–205. doi: 10.1016/0092-8674(95)90329-1. [DOI] [PubMed] [Google Scholar]
  33. Lotan R., Lotan D., Carralero D. M. Modulation of galactoside-binding lectins in tumor cells by differentiation-inducing agents. Cancer Lett. 1989 Nov 30;48(2):115–122. doi: 10.1016/0304-3835(89)90046-3. [DOI] [PubMed] [Google Scholar]
  34. Mahanthappa N. K., Cooper D. N., Barondes S. H., Schwarting G. A. Rat olfactory neurons can utilize the endogenous lectin, L-14, in a novel adhesion mechanism. Development. 1994 Jun;120(6):1373–1384. doi: 10.1242/dev.120.6.1373. [DOI] [PubMed] [Google Scholar]
  35. Murray E. J., Grosveld F. Site specific demethylation in the promoter of human gamma-globin gene does not alleviate methylation mediated suppression. EMBO J. 1987 Aug;6(8):2329–2335. doi: 10.1002/j.1460-2075.1987.tb02508.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nissley S. P., Short P. A., Rechler M. M., Podskalny J. M., Coon H. G. Proliferation of Buffalo rat liver cells in serum-free medium does not depend upon multiplication-stimulating activity (MSA). Cell. 1977 Jun;11(2):441–446. doi: 10.1016/0092-8674(77)90062-9. [DOI] [PubMed] [Google Scholar]
  37. Ohannesian D. W., Lotan D., Lotan R. Concomitant increases in galectin-1 and its glycoconjugate ligands (carcinoembryonic antigen, lamp-1, and lamp-2) in cultured human colon carcinoma cells by sodium butyrate. Cancer Res. 1994 Nov 15;54(22):5992–6000. [PubMed] [Google Scholar]
  38. Poirier F., Timmons P. M., Chan C. T., Guénet J. L., Rigby P. W. Expression of the L14 lectin during mouse embryogenesis suggests multiple roles during pre- and post-implantation development. Development. 1992 May;115(1):143–155. doi: 10.1242/dev.115.1.143. [DOI] [PubMed] [Google Scholar]
  39. Prendergast G. C., Ziff E. B. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science. 1991 Jan 11;251(4990):186–189. doi: 10.1126/science.1987636. [DOI] [PubMed] [Google Scholar]
  40. Raz A., Lotan R. Endogenous galactoside-binding lectins: a new class of functional tumor cell surface molecules related to metastasis. Cancer Metastasis Rev. 1987;6(3):433–452. doi: 10.1007/BF00144274. [DOI] [PubMed] [Google Scholar]
  41. Raz A., Meromsky L., Zvibel I., Lotan R. Transformation-related changes in the expression of endogenous cell lectins. Int J Cancer. 1987 Mar 15;39(3):353–360. doi: 10.1002/ijc.2910390314. [DOI] [PubMed] [Google Scholar]
  42. Rhodes K., Rippe R. A., Umezawa A., Nehls M., Brenner D. A., Breindl M. DNA methylation represses the murine alpha 1(I) collagen promoter by an indirect mechanism. Mol Cell Biol. 1994 Sep;14(9):5950–5960. doi: 10.1128/mcb.14.9.5950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rideout W. M., 3rd, Eversole-Cire P., Spruck C. H., 3rd, Hustad C. M., Coetzee G. A., Gonzales F. A., Jones P. A. Progressive increases in the methylation status and heterochromatinization of the myoD CpG island during oncogenic transformation. Mol Cell Biol. 1994 Sep;14(9):6143–6152. doi: 10.1128/mcb.14.9.6143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Salvatore P., Contursi C., Benvenuto G., Bruni C. B., Chiariotti L. Characterization and functional dissection of the galectin-1 gene promoter. FEBS Lett. 1995 Oct 9;373(2):159–163. doi: 10.1016/0014-5793(95)01032-a. [DOI] [PubMed] [Google Scholar]
  45. Sasaki T., Hansen R. S., Gartler S. M. Hemimethylation and hypersensitivity are early events in transcriptional reactivation of human inactive X-linked genes in a hamster x human somatic cell hybrid. Mol Cell Biol. 1992 Sep;12(9):3819–3826. doi: 10.1128/mcb.12.9.3819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sellem C. H., Weiss M. C., Cassio D. Activation of a silent gene is accompanied by its demethylation. J Mol Biol. 1985 Feb 5;181(3):363–371. doi: 10.1016/0022-2836(85)90225-6. [DOI] [PubMed] [Google Scholar]
  47. Sellem C. H., Weiss M. C., Cassio D. Conditions required for activation of the mouse albumin or alpha-fetoprotein gene in hybrids between mouse lymphoblastoma and rat hepatoma cells. Differentiation. 1988 Nov;39(1):66–77. doi: 10.1111/j.1432-0436.1988.tb00082.x. [DOI] [PubMed] [Google Scholar]
  48. Skrincosky D. M., Allen H. J., Bernacki R. J. Galaptin-mediated adhesion of human ovarian carcinoma A121 cells and detection of cellular galaptin-binding glycoproteins. Cancer Res. 1993 Jun 1;53(11):2667–2675. [PubMed] [Google Scholar]
  49. Wells V., Mallucci L. Identification of an autocrine negative growth factor: mouse beta-galactoside-binding protein is a cytostatic factor and cell growth regulator. Cell. 1991 Jan 11;64(1):91–97. doi: 10.1016/0092-8674(91)90211-g. [DOI] [PubMed] [Google Scholar]
  50. Yamaoka K., Ohno S., Kawasaki H., Suzuki K. Overexpression of a beta-galactoside binding protein causes transformation of BALB3T3 fibroblast cells. Biochem Biophys Res Commun. 1991 Aug 30;179(1):272–279. doi: 10.1016/0006-291x(91)91365-j. [DOI] [PubMed] [Google Scholar]
  51. Yisraeli J., Frank D., Razin A., Cedar H. Effect of in vitro DNA methylation on beta-globin gene expression. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4638–4642. doi: 10.1073/pnas.85.13.4638. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES