Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Jun;16(6):3035–3046. doi: 10.1128/mcb.16.6.3035

Human interleukin-3 (IL-3) induces disulfide-linked IL-3 receptor alpha- and beta-chain heterodimerization, which is required for receptor activation but not high-affinity binding.

F C Stomski 1, Q Sun 1, C J Bagley 1, J Woodcock 1, G Goodall 1, R K Andrews 1, M C Berndt 1, A F Lopez 1
PMCID: PMC231298  PMID: 8649415

Abstract

The human interleukin-3 receptor (IL-3R) is a heterodimer that comprises an IL-3 specific alpha chain (IL-3R alpha) and a common beta chain (beta C) that is shared with the receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-5. These receptors belong to the cytokine receptor superfamily, but they are structurally and functionally more related to each other and thus make up a distinct subfamily. Although activation of the normal receptor occurs only in the presence of ligand, the underlying mechanisms are not known. We show here that human IL-3 induces heterodimerization of IL-3R alpha and beta c and that disulfide linkage of these chains is involved in receptor activation but not high-affinity binding. Monoclonal antibodies (MAb) to IL-3R alpha and beta c were developed which immunoprecipitated, in the absence of IL-3, the respective chains from cells labelled with 125I on the cell surface. However, in the presence of IL-3, each MAb immunoprecipitated both IL-3R alpha and beta c. IL-3-induced receptor dimers were disulfide and nondisulfide linked and were dependent on IL-3 interacting with both IL-3R alpha and beta c. In the presence of IL-3 and under nonreducing conditions, MAb to either IL-3R alpha or beta c immunoprecipitated complexes with apparent molecular weights of 215,000 and 245,000 and IL-3R alpha and beta c monomers. Preincubation with iodoacetamide prevented the formation of the two high-molecular-weight complexes without affecting noncovalent dimer formation or high-affinity IL-3 binding. Two-dimensional gel electrophoresis and Western blotting (immunoblotting) demonstrated the presence of both IL-3R alpha and beta c in the disulfide-linked complexes. IL-3 could also be coimmunoprecipitated with anti-IL-3R alpha or anti-beta c MAB, but it was not covalently attached to the receptor. Following IL-3 stimulation, only the disulfide-linked heterodimers exhibited reactivity with antiphosphotyrosine antibodies, with beta c but not IL-3R alpha being the phosphorylated species. A model of IL-3R activation is proposed which may be also applicable to the related GM-CSF and IL-5 receptors.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azam M., Erdjument-Bromage H., Kreider B. L., Xia M., Quelle F., Basu R., Saris C., Tempst P., Ihle J. N., Schindler C. Interleukin-3 signals through multiple isoforms of Stat5. EMBO J. 1995 Apr 3;14(7):1402–1411. doi: 10.1002/j.1460-2075.1995.tb07126.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barry S. C., Bagley C. J., Phillips J., Dottore M., Cambareri B., Moretti P., D'Andrea R., Goodall G. J., Shannon M. F., Vadas M. A. Two contiguous residues in human interleukin-3, Asp21 and Glu22, selectively interact with the alpha- and beta-chains of its receptor and participate in function. J Biol Chem. 1994 Mar 18;269(11):8488–8492. [PubMed] [Google Scholar]
  3. Bazan J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6934–6938. doi: 10.1073/pnas.87.18.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark S. C., Kamen R. The human hematopoietic colony-stimulating factors. Science. 1987 Jun 5;236(4806):1229–1237. doi: 10.1126/science.3296190. [DOI] [PubMed] [Google Scholar]
  5. Contreras M. A., Bale W. F., Spar I. L. Iodine monochloride (IC1) iodination techniques. Methods Enzymol. 1983;92:277–292. [PubMed] [Google Scholar]
  6. D'Andrea R., Rayner J., Moretti P., Lopez A., Goodall G. J., Gonda T. J., Vadas M. A mutation of the common receptor subunit for interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor, and IL-5 that leads to ligand independence and tumorigenicity. Blood. 1994 May 15;83(10):2802–2808. [PubMed] [Google Scholar]
  7. Davis S., Aldrich T. H., Stahl N., Pan L., Taga T., Kishimoto T., Ip N. Y., Yancopoulos G. D. LIFR beta and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science. 1993 Jun 18;260(5115):1805–1808. doi: 10.1126/science.8390097. [DOI] [PubMed] [Google Scholar]
  8. Eder M., Ernst T. J., Ganser A., Jubinsky P. T., Inhorn R., Hoelzer D., Griffin J. D. A low affinity chimeric human alpha/beta-granulocyte-macrophage colony-stimulating factor receptor induces ligand-dependent proliferation in a murine cell line. J Biol Chem. 1994 Dec 2;269(48):30173–30180. [PubMed] [Google Scholar]
  9. Elliott M. J., Vadas M. A., Eglinton J. M., Park L. S., To L. B., Cleland L. G., Clark S. C., Lopez A. F. Recombinant human interleukin-3 and granulocyte-macrophage colony-stimulating factor show common biological effects and binding characteristics on human monocytes. Blood. 1989 Nov 15;74(7):2349–2359. [PubMed] [Google Scholar]
  10. Goodall G. J., Bagley C. J., Vadas M. A., Lopez A. F. A model for the interaction of the GM-CSF, IL-3 and IL-5 receptors with their ligands. Growth Factors. 1993;8(2):87–97. doi: 10.3109/08977199309046929. [DOI] [PubMed] [Google Scholar]
  11. Haak-Frendscho M., Arai N., Arai K., Baeza M. L., Finn A., Kaplan A. P. Human recombinant granulocyte-macrophage colony-stimulating factor and interleukin 3 cause basophil histamine release. J Clin Invest. 1988 Jul;82(1):17–20. doi: 10.1172/JCI113567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayashida K., Kitamura T., Gorman D. M., Arai K., Yokota T., Miyajima A. Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9655–9659. doi: 10.1073/pnas.87.24.9655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heldin C. H. Dimerization of cell surface receptors in signal transduction. Cell. 1995 Jan 27;80(2):213–223. doi: 10.1016/0092-8674(95)90404-2. [DOI] [PubMed] [Google Scholar]
  14. Hibi M., Murakami M., Saito M., Hirano T., Taga T., Kishimoto T. Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell. 1990 Dec 21;63(6):1149–1157. doi: 10.1016/0092-8674(90)90411-7. [DOI] [PubMed] [Google Scholar]
  15. Hiraoka O., Anaguchi H., Ota Y. Evidence for the ligand-induced conversion from a dimer to a tetramer of the granulocyte colony-stimulating factor receptor. FEBS Lett. 1994 Dec 19;356(2-3):255–260. doi: 10.1016/0014-5793(94)01278-4. [DOI] [PubMed] [Google Scholar]
  16. Jenkins B. J., D'Andrea R., Gonda T. J. Activating point mutations in the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors suggest the involvement of beta subunit dimerization and cell type-specific molecules in signalling. EMBO J. 1995 Sep 1;14(17):4276–4287. doi: 10.1002/j.1460-2075.1995.tb00102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kitamura T., Miyajima A. Functional reconstitution of the human interleukin-3 receptor. Blood. 1992 Jul 1;80(1):84–90. [PubMed] [Google Scholar]
  18. Kitamura T., Sato N., Arai K., Miyajima A. Expression cloning of the human IL-3 receptor cDNA reveals a shared beta subunit for the human IL-3 and GM-CSF receptors. Cell. 1991 Sep 20;66(6):1165–1174. doi: 10.1016/0092-8674(91)90039-2. [DOI] [PubMed] [Google Scholar]
  19. Korpelainen E. I., Gamble J. R., Smith W. B., Dottore M., Vadas M. A., Lopez A. F. Interferon-gamma upregulates interleukin-3 (IL-3) receptor expression in human endothelial cells and synergizes with IL-3 in stimulating major histocompatibility complex class II expression and cytokine production. Blood. 1995 Jul 1;86(1):176–182. [PubMed] [Google Scholar]
  20. Korpelainen E. I., Gamble J. R., Smith W. B., Goodall G. J., Qiyu S., Woodcock J. M., Dottore M., Vadas M. A., Lopez A. F. The receptor for interleukin 3 is selectively induced in human endothelial cells by tumor necrosis factor alpha and potentiates interleukin 8 secretion and neutrophil transmigration. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11137–11141. doi: 10.1073/pnas.90.23.11137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lev S., Yarden Y., Givol D. Dimerization and activation of the kit receptor by monovalent and bivalent binding of the stem cell factor. J Biol Chem. 1992 Aug 5;267(22):15970–15977. [PubMed] [Google Scholar]
  22. Lock P., Metcalf D., Nicola N. A. Histidine-367 of the human common beta chain of the receptor is critical for high-affinity binding of human granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):252–256. doi: 10.1073/pnas.91.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lopez A. F., Eglinton J. M., Lyons A. B., Tapley P. M., To L. B., Park L. S., Clark S. C., Vadas M. A. Human interleukin-3 inhibits the binding of granulocyte-macrophage colony-stimulating factor and interleukin-5 to basophils and strongly enhances their functional activity. J Cell Physiol. 1990 Oct;145(1):69–77. doi: 10.1002/jcp.1041450111. [DOI] [PubMed] [Google Scholar]
  24. Lopez A. F., Elliott M. J., Woodcock J., Vadas M. A. GM-CSF, IL-3 and IL-5: cross-competition on human haemopoietic cells. Immunol Today. 1992 Dec;13(12):495–500. doi: 10.1016/0167-5699(92)90025-3. [DOI] [PubMed] [Google Scholar]
  25. Lopez A. F., To L. B., Yang Y. C., Gamble J. R., Shannon M. F., Burns G. F., Dyson P. G., Juttner C. A., Clark S., Vadas M. A. Stimulation of proliferation, differentiation, and function of human cells by primate interleukin 3. Proc Natl Acad Sci U S A. 1987 May;84(9):2761–2765. doi: 10.1073/pnas.84.9.2761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature. 1989 May 4;339(6219):27–30. doi: 10.1038/339027a0. [DOI] [PubMed] [Google Scholar]
  27. Miura O., Ihle J. N. Dimer- and oligomerization of the erythropoietin receptor by disulfide bond formation and significance of the region near the WSXWS motif in intracellular transport. Arch Biochem Biophys. 1993 Oct;306(1):200–208. doi: 10.1006/abbi.1993.1501. [DOI] [PubMed] [Google Scholar]
  28. Miyajima A., Hara T., Kitamura T. Common subunits of cytokine receptors and the functional redundancy of cytokines. Trends Biochem Sci. 1992 Oct;17(10):378–382. doi: 10.1016/0968-0004(92)90004-s. [DOI] [PubMed] [Google Scholar]
  29. Mui A. L., Wakao H., O'Farrell A. M., Harada N., Miyajima A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 1995 Mar 15;14(6):1166–1175. doi: 10.1002/j.1460-2075.1995.tb07100.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  31. Murakami M., Hibi M., Nakagawa N., Nakagawa T., Yasukawa K., Yamanishi K., Taga T., Kishimoto T. IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science. 1993 Jun 18;260(5115):1808–1810. doi: 10.1126/science.8511589. [DOI] [PubMed] [Google Scholar]
  32. Muto A., Watanabe S., Miyajima A., Yokota T., Arai K. High affinity chimeric human granulocyte-macrophage colony-stimulating factor receptor carrying the cytoplasmic domain of the beta subunit but not the alpha subunit transduces growth promoting signals in Ba/F3 cells. Biochem Biophys Res Commun. 1995 Mar 8;208(1):368–375. doi: 10.1006/bbrc.1995.1347. [DOI] [PubMed] [Google Scholar]
  33. Nicola N. A., Metcalf D. Subunit promiscuity among hemopoietic growth factor receptors. Cell. 1991 Oct 4;67(1):1–4. doi: 10.1016/0092-8674(91)90564-f. [DOI] [PubMed] [Google Scholar]
  34. Paonessa G., Graziani R., De Serio A., Savino R., Ciapponi L., Lahm A., Salvati A. L., Toniatti C., Ciliberto G. Two distinct and independent sites on IL-6 trigger gp 130 dimer formation and signalling. EMBO J. 1995 May 1;14(9):1942–1951. doi: 10.1002/j.1460-2075.1995.tb07186.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Phillips D. R., Agin P. P. Platelet plasma membrane glycoproteins. Evidence for the presence of nonequivalent disulfide bonds using nonreduced-reduced two-dimensional gel electrophoresis. J Biol Chem. 1977 Mar 25;252(6):2121–2126. [PubMed] [Google Scholar]
  36. Polotskaya A., Zhao Y., Lilly M. L., Kraft A. S. A critical role for the cytoplasmic domain of the granulocyte-macrophage colony-stimulating factor alpha receptor in mediating cell growth. Cell Growth Differ. 1993 Jun;4(6):523–531. [PubMed] [Google Scholar]
  37. Quelle F. W., Sato N., Witthuhn B. A., Inhorn R. C., Eder M., Miyajima A., Griffin J. D., Ihle J. N. JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol. 1994 Jul;14(7):4335–4341. doi: 10.1128/mcb.14.7.4335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rao P., Kitamura T., Miyajima A., Mufson R. A. Human IL-3 receptor signaling: rapid induction of phosphatidylcholine hydrolysis is independent of protein kinase C but dependent on tyrosine phosphorylation in transfected NIH 3T3 cells. J Immunol. 1995 Feb 15;154(4):1664–1674. [PubMed] [Google Scholar]
  39. Sakamaki K., Miyajima I., Kitamura T., Miyajima A. Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J. 1992 Oct;11(10):3541–3549. doi: 10.1002/j.1460-2075.1992.tb05437.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sato N., Miyajima A. Multimeric cytokine receptors: common versus specific functions. Curr Opin Cell Biol. 1994 Apr;6(2):174–179. doi: 10.1016/0955-0674(94)90133-3. [DOI] [PubMed] [Google Scholar]
  41. Sato N., Sakamaki K., Terada N., Arai K., Miyajima A. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO J. 1993 Nov;12(11):4181–4189. doi: 10.1002/j.1460-2075.1993.tb06102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Silvennoinen O., Witthuhn B. A., Quelle F. W., Cleveland J. L., Yi T., Ihle J. N. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8429–8433. doi: 10.1073/pnas.90.18.8429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Smith W. B., Guida L., Sun Q., Korpelainen E. I., van den Heuvel C., Gillis D., Hawrylowicz C. M., Vadas M. A., Lopez A. F. Neutrophils activated by granulocyte-macrophage colony-stimulating factor express receptors for interleukin-3 which mediate class II expression. Blood. 1995 Nov 15;86(10):3938–3944. [PubMed] [Google Scholar]
  44. Stomski F. C., Gani J. S., Bates R. C., Burns G. F. Adhesion to thrombospondin by human embryonic fibroblasts is mediated by multiple receptors and includes a role for glycoprotein 88 (CD36). Exp Cell Res. 1992 Jan;198(1):85–92. doi: 10.1016/0014-4827(92)90152-x. [DOI] [PubMed] [Google Scholar]
  45. Sun Q., Woodcock J. M., Rapoport A., Stomski F. C., Korpelainen E. I., Bagley C. J., Goodall G. J., Smith W. B., Gamble J. R., Vadas M. A. Monoclonal antibody 7G3 recognizes the N-terminal domain of the human interleukin-3 (IL-3) receptor alpha-chain and functions as a specific IL-3 receptor antagonist. Blood. 1996 Jan 1;87(1):83–92. [PubMed] [Google Scholar]
  46. Takaki S., Kanazawa H., Shiiba M., Takatsu K. A critical cytoplasmic domain of the interleukin-5 (IL-5) receptor alpha chain and its function in IL-5-mediated growth signal transduction. Mol Cell Biol. 1994 Nov;14(11):7404–7413. doi: 10.1128/mcb.14.11.7404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Torigoe T., O'Connor R., Santoli D., Reed J. C. Interleukin-3 regulates the activity of the LYN protein-tyrosine kinase in myeloid-committed leukemic cell lines. Blood. 1992 Aug 1;80(3):617–624. [PubMed] [Google Scholar]
  48. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  49. Walsh F. S., Crumpton M. J. Orientation of cell-surface antigens in the lipid bilayer of lymphocyte plasma membrane. Nature. 1977 Sep 22;269(5626):307–311. doi: 10.1038/269307a0. [DOI] [PubMed] [Google Scholar]
  50. Ward L. D., Howlett G. J., Discolo G., Yasukawa K., Hammacher A., Moritz R. L., Simpson R. J. High affinity interleukin-6 receptor is a hexameric complex consisting of two molecules each of interleukin-6, interleukin-6 receptor, and gp-130. J Biol Chem. 1994 Sep 16;269(37):23286–23289. [PubMed] [Google Scholar]
  51. Watanabe S., Mui A. L., Muto A., Chen J. X., Hayashida K., Yokota T., Miyajima A., Arai K. Reconstituted human granulocyte-macrophage colony-stimulating factor receptor transduces growth-promoting signals in mouse NIH 3T3 cells: comparison with signalling in BA/F3 pro-B cells. Mol Cell Biol. 1993 Mar;13(3):1440–1448. doi: 10.1128/mcb.13.3.1440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Watowich S. S., Hilton D. J., Lodish H. F. Activation and inhibition of erythropoietin receptor function: role of receptor dimerization. Mol Cell Biol. 1994 Jun;14(6):3535–3549. doi: 10.1128/mcb.14.6.3535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Weiss M., Yokoyama C., Shikama Y., Naugle C., Druker B., Sieff C. A. Human granulocyte-macrophage colony-stimulating factor receptor signal transduction requires the proximal cytoplasmic domains of the alpha and beta subunits. Blood. 1993 Dec 1;82(11):3298–3306. [PubMed] [Google Scholar]
  54. Woodcock J. M., Zacharakis B., Plaetinck G., Bagley C. J., Qiyu S., Hercus T. R., Tavernier J., Lopez A. F. Three residues in the common beta chain of the human GM-CSF, IL-3 and IL-5 receptors are essential for GM-CSF and IL-5 but not IL-3 high affinity binding and interact with Glu21 of GM-CSF. EMBO J. 1994 Nov 1;13(21):5176–5185. doi: 10.1002/j.1460-2075.1994.tb06848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Yawata H., Yasukawa K., Natsuka S., Murakami M., Yamasaki K., Hibi M., Taga T., Kishimoto T. Structure-function analysis of human IL-6 receptor: dissociation of amino acid residues required for IL-6-binding and for IL-6 signal transduction through gp130. EMBO J. 1993 Apr;12(4):1705–1712. doi: 10.1002/j.1460-2075.1993.tb05815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. de Vos A. M., Ultsch M., Kossiakoff A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992 Jan 17;255(5042):306–312. doi: 10.1126/science.1549776. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES