Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Jun;16(6):3125–3137. doi: 10.1128/mcb.16.6.3125

The activity of the highly inducible mouse phenylalanine hydroxylase gene promoter is dependent upon a tissue-specific, hormone-inducible enhancer.

D M Faust 1, A M Catherin 1, S Barbaux 1, L Belkadi 1, T Imaizumi-Scherrer 1, M C Weiss 1
PMCID: PMC231307  PMID: 8649424

Abstract

Expression of the phenylalanine hydroxylase gene in livers and kidneys of rodents is activated at birth and is induced by glucocorticoids and cyclic AMP in the liver. Regulatory elements in a 10-kb fragment upstream of the mouse gene have been characterized. The promoter lacks TAATA and CCAAT consensus sequences and shows only extremely weak activity in transitory expression assays with phenylalanine hydroxylase-producing hepatoma cells. No key elements for regulation of promoter activity are localized within 2 kb of upstream sequences. However, a liver-specific DNase I-hypersensitive site at kb -3.5 comprises a tissue-specific and hormone-inducible enhancer. This enhancer contains multiple protein binding sites, including sites for ubiquitous factors (NF1 and AP1), the glucocorticoid receptor, and the hepatocyte-enriched transcription factors hepatocyte nuclear factor 1 (HNF1) and C/EBP. Mutation revealed that the last two sites are critical not only for basal activity but also for obtaining a maximal hormone response. Efficient transcription from the highly inducible promoter shows absolute dependence upon the enhancer at kb - 3.5, which in turn requires HNF1 and C/EBP as well as hormones. The regulatory region of the mouse phenylalanine hydroxylase gene differs totally from that of humans, even though the genes of both species are expressed essentially in the liver. Furthermore, the phenylalanine hydroxylase gene of mice shows an expression pattern very similar to those of the rodent tyrosine aminotransferase and phosphoenolpyruvate carboxykinase genes, yet each shows a different organization of its regulatory region.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angrand P. O., Coffinier C., Weiss M. C. Response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids depends on the integrity of the cAMP pathway. Cell Growth Differ. 1994 Sep;5(9):957–966. [PubMed] [Google Scholar]
  2. Angrand P. O., Kallenbach S., Weiss M. C., Rousset J. P. An exogenous albumin promoter can become silent in dedifferentiated hepatoma variants as well as intertypic hybrids. Cell Growth Differ. 1990 Nov;1(11):519–526. [PubMed] [Google Scholar]
  3. Birkenmeier E. H., Gwynn B., Howard S., Jerry J., Gordon J. I., Landschulz W. H., McKnight S. L. Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/enhancer binding protein. Genes Dev. 1989 Aug;3(8):1146–1156. doi: 10.1101/gad.3.8.1146. [DOI] [PubMed] [Google Scholar]
  4. Boshart M., Klüppel M., Schmidt A., Schütz G., Luckow B. Reporter constructs with low background activity utilizing the cat gene. Gene. 1992 Jan 2;110(1):129–130. doi: 10.1016/0378-1119(92)90456-y. [DOI] [PubMed] [Google Scholar]
  5. Boularand S., Darmon M. C., Ravassard P., Mallet J. Characterization of the human tryptophan hydroxylase gene promoter. Transcriptional regulation by cAMP requires a new motif distinct from the cAMP-responsive element. J Biol Chem. 1995 Feb 24;270(8):3757–3764. doi: 10.1074/jbc.270.8.3757. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Cao Z., Umek R. M., McKnight S. L. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 1991 Sep;5(9):1538–1552. doi: 10.1101/gad.5.9.1538. [DOI] [PubMed] [Google Scholar]
  8. Cereghini S., Blumenfeld M., Yaniv M. A liver-specific factor essential for albumin transcription differs between differentiated and dedifferentiated rat hepatoma cells. Genes Dev. 1988 Aug;2(8):957–974. doi: 10.1101/gad.2.8.957. [DOI] [PubMed] [Google Scholar]
  9. Cereghini S., Raymondjean M., Carranca A. G., Herbomel P., Yaniv M. Factors involved in control of tissue-specific expression of albumin gene. Cell. 1987 Aug 14;50(4):627–638. doi: 10.1016/0092-8674(87)90036-5. [DOI] [PubMed] [Google Scholar]
  10. Cereghini S., Yaniv M., Cortese R. Hepatocyte dedifferentiation and extinction is accompanied by a block in the synthesis of mRNA coding for the transcription factor HNF1/LFB1. EMBO J. 1990 Jul;9(7):2257–2263. doi: 10.1002/j.1460-2075.1990.tb07396.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chow B. K., Ting V., Tufaro F., MacGillivray R. T. Characterization of a novel liver-specific enhancer in the human prothrombin gene. J Biol Chem. 1991 Oct 5;266(28):18927–18933. [PubMed] [Google Scholar]
  12. Chow C. W., Clark M. P., Rinaldo J. E., Chalkley R. Multiple initiators and C/EBP binding sites are involved in transcription from the TATA-less rat XDH/XO basal promoter. Nucleic Acids Res. 1995 Aug 25;23(16):3132–3140. doi: 10.1093/nar/23.16.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Citron B. A., Davis M. D., Milstien S., Gutierrez J., Mendel D. B., Crabtree G. R., Kaufman S. Identity of 4a-carbinolamine dehydratase, a component of the phenylalanine hydroxylation system, and DCoH, a transregulator of homeodomain proteins. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11891–11894. doi: 10.1073/pnas.89.24.11891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Coon H. G., Weiss M. C. A quantitative comparison of formation of spontaneous and virus-produced viable hybrids. Proc Natl Acad Sci U S A. 1969 Mar;62(3):852–859. doi: 10.1073/pnas.62.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. DUBBS D. R., KIT S. EFFECT OF HALOGENATED PYRIMIDINES AND THYMIDINE ON GROWTH OF L-CELLS AND A SUBLINE LACKING THYMIDINE KINASE. Exp Cell Res. 1964 Jan;33:19–28. doi: 10.1016/s0014-4827(64)81006-5. [DOI] [PubMed] [Google Scholar]
  17. Deschatrette J., Weiss M. C. Characterization of differentiated and dedifferentiated clones from a rat hepatoma. Biochimie. 1974;56(11-12):1603–1611. doi: 10.1016/s0300-9084(75)80286-0. [DOI] [PubMed] [Google Scholar]
  18. DiLella A. G., Kwok S. C., Ledley F. D., Marvit J., Woo S. L. Molecular structure and polymorphic map of the human phenylalanine hydroxylase gene. Biochemistry. 1986 Feb 25;25(4):743–749. doi: 10.1021/bi00352a001. [DOI] [PubMed] [Google Scholar]
  19. Eisensmith R. C., Woo S. L. Phenylketonuria and the phenylalanine hydroxylase gene. Mol Biol Med. 1991 Feb;8(1):3–18. [PubMed] [Google Scholar]
  20. Faust D. M., Boshart M., Imaizumi-Scherrer T., Schütz G., Weiss M. C. Constancy of expression of the protein kinase A regulatory subunit R1 alpha in hepatoma cell lines of different phenotypes. Cell Growth Differ. 1994 Jan;5(1):47–53. [PubMed] [Google Scholar]
  21. Faust D. M., Imaizumi-Scherrer T., Fulchignoni-Lataud M. C., Catherin A. M., Iost I., Weiss M. C. Activation of phenylalanine hydroxylase expression following genomic DNA transfection of hepatoma cells. Differentiation. 1990 Jul;44(1):74–79. doi: 10.1111/j.1432-0436.1990.tb00539.x. [DOI] [PubMed] [Google Scholar]
  22. Freedman L. P., Yoshinaga S. K., Vanderbilt J. N., Yamamoto K. R. In vitro transcription enhancement by purified derivatives of the glucocorticoid receptor. Science. 1989 Jul 21;245(4915):298–301. doi: 10.1126/science.2473529. [DOI] [PubMed] [Google Scholar]
  23. Friedman A. D., Landschulz W. H., McKnight S. L. CCAAT/enhancer binding protein activates the promoter of the serum albumin gene in cultured hepatoma cells. Genes Dev. 1989 Sep;3(9):1314–1322. doi: 10.1101/gad.3.9.1314. [DOI] [PubMed] [Google Scholar]
  24. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Haggerty D. F., Chiappelli F., Kern R., Scully S., Lynch M. Regulation by glucocorticoids of rat-liver phenylalanine hydroxylase in vivo. Biochem Biophys Res Commun. 1983 Sep 30;115(3):965–970. doi: 10.1016/s0006-291x(83)80029-1. [DOI] [PubMed] [Google Scholar]
  26. Haggerty D. F., Young P. L., Popják G., Carnes W. H. Phenylalanine hydroxylase in cultured hepatoxytes. I. Hormonal control of enzyme levels. J Biol Chem. 1973 Jan 10;248(1):223–232. [PubMed] [Google Scholar]
  27. Imai E., Miner J. N., Mitchell J. A., Yamamoto K. R., Granner D. K. Glucocorticoid receptor-cAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids. J Biol Chem. 1993 Mar 15;268(8):5353–5356. [PubMed] [Google Scholar]
  28. Kaufman S. Phenylalanine 4-monooxygenase from rat liver. Methods Enzymol. 1987;142:3–17. doi: 10.1016/s0076-6879(87)42003-x. [DOI] [PubMed] [Google Scholar]
  29. Konecki D. S., Wang Y., Trefz F. K., Lichter-Konecki U., Woo S. L. Structural characterization of the 5' regions of the human phenylalanine hydroxylase gene. Biochemistry. 1992 Sep 8;31(35):8363–8368. doi: 10.1021/bi00150a033. [DOI] [PubMed] [Google Scholar]
  30. Lavery D. J., Schibler U. Circadian transcription of the cholesterol 7 alpha hydroxylase gene may involve the liver-enriched bZIP protein DBP. Genes Dev. 1993 Oct;7(10):1871–1884. doi: 10.1101/gad.7.10.1871. [DOI] [PubMed] [Google Scholar]
  31. Lewis E. J., Harrington C. A., Chikaraishi D. M. Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3550–3554. doi: 10.1073/pnas.84.11.3550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McDowall I. L., Fisher M. J. The immediate 5'-flanking region of the rat phenylalanine hydroxylase-encoding gene. Gene. 1995 Feb 14;153(2):289–290. doi: 10.1016/0378-1119(94)00802-y. [DOI] [PubMed] [Google Scholar]
  33. McGee M. M., Greengard O., Knox W. E. The quantitative determination of phenylalanine hydroxylase in rat tissues. Its developmental formation in liver. Biochem J. 1972 May;127(4):669–674. doi: 10.1042/bj1270669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mitnaul L. J., Shiman R. Coordinate regulation of tetrahydrobiopterin turnover and phenylalanine hydroxylase activity in rat liver cells. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):885–889. doi: 10.1073/pnas.92.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Moulton K. S., Wu H., Barnett J., Parthasarathy S., Glass C. K. Regulated expression of the human acetylated low density lipoprotein receptor gene and isolation of promoter sequences. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8102–8106. doi: 10.1073/pnas.89.17.8102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nitsch D., Boshart M., Schütz G. Activation of the tyrosine aminotransferase gene is dependent on synergy between liver-specific and hormone-responsive elements. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5479–5483. doi: 10.1073/pnas.90.12.5479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pontoglio M., Barra J., Hadchouel M., Doyen A., Kress C., Bach J. P., Babinet C., Yaniv M. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell. 1996 Feb 23;84(4):575–585. doi: 10.1016/s0092-8674(00)81033-8. [DOI] [PubMed] [Google Scholar]
  38. Rey-Campos J., Chouard T., Yaniv M., Cereghini S. vHNF1 is a homeoprotein that activates transcription and forms heterodimers with HNF1. EMBO J. 1991 Jun;10(6):1445–1457. doi: 10.1002/j.1460-2075.1991.tb07665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Scriver C. R., Kaufman S., Woo S. L. Mendelian hyperphenylalaninemia. Annu Rev Genet. 1988;22:301–321. doi: 10.1146/annurev.ge.22.120188.001505. [DOI] [PubMed] [Google Scholar]
  40. Seed B., Sheen J. Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 1988 Jul 30;67(2):271–277. doi: 10.1016/0378-1119(88)90403-9. [DOI] [PubMed] [Google Scholar]
  41. Su Y., Kanamoto R., Ogawa H., Pitot H. C. Regulatory elements for the tissue-specific expression of the rat serine dehydratase-encoding gene. Gene. 1992 Oct 21;120(2):301–306. doi: 10.1016/0378-1119(92)90110-b. [DOI] [PubMed] [Google Scholar]
  42. Szpirer C., Szpirer J. A mouse hepatoma cell line which secretes several serum proteins including albumin and alpha-foetoprotein. Differentiation. 1975 Oct 16;4(2):85–91. doi: 10.1111/j.1432-0436.1975.tb01446.x. [DOI] [PubMed] [Google Scholar]
  43. Tourian A. Phenylalanine hydroxylase activity in foetal hepatic organ culture. Biochim Biophys Acta. 1973 May 5;309(1):44–49. doi: 10.1016/0005-2744(73)90315-x. [DOI] [PubMed] [Google Scholar]
  44. Tourian A., Treiman D. M., Carr J. S. Developmental biology of hepatic phenylalanine hydroxylase activity in foetal and neonatal rats synchronized as to conception. Biochim Biophys Acta. 1972 Oct 25;279(3):484–490. doi: 10.1016/0304-4165(72)90170-5. [DOI] [PubMed] [Google Scholar]
  45. Tronche F., Rollier A., Bach I., Weiss M. C., Yaniv M. The rat albumin promoter: cooperation with upstream elements is required when binding of APF/HNF1 to the proximal element is partially impaired by mutation or bacterial methylation. Mol Cell Biol. 1989 Nov;9(11):4759–4766. doi: 10.1128/mcb.9.11.4759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wang N. D., Finegold M. J., Bradley A., Ou C. N., Abdelsayed S. V., Wilde M. D., Taylor L. R., Wilson D. R., Darlington G. J. Impaired energy homeostasis in C/EBP alpha knockout mice. Science. 1995 Aug 25;269(5227):1108–1112. doi: 10.1126/science.7652557. [DOI] [PubMed] [Google Scholar]
  47. Wang Y., DeMayo J. L., Hahn T. M., Finegold M. J., Konecki D. S., Lichter-Konecki U., Woo S. L. Tissue- and development-specific expression of the human phenylalanine hydroxylase/chloramphenicol acetyltransferase fusion gene in transgenic mice. J Biol Chem. 1992 Jul 25;267(21):15105–15110. [PubMed] [Google Scholar]
  48. Wang Y., Hahn T. M., Tsai S. Y., Woo S. L. Functional characterization of a unique liver gene promoter. J Biol Chem. 1994 Mar 25;269(12):9137–9146. [PubMed] [Google Scholar]
  49. Yeoh G. C., Edkins E., Mackenzie K., Fuller S., Mercer J. F., Dahl H. H. The development of phenylalanine hydroxylase in rat liver; in vivo, and in vitro studies utilizing fetal hepatocyte cultures. Differentiation. 1988 Jun;38(1):42–48. doi: 10.1111/j.1432-0436.1988.tb00590.x. [DOI] [PubMed] [Google Scholar]
  50. Zhong W., Mirkovitch J., Darnell J. E., Jr Tissue-specific regulation of mouse hepatocyte nuclear factor 4 expression. Mol Cell Biol. 1994 Nov;14(11):7276–7284. doi: 10.1128/mcb.14.11.7276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES