Abstract
The Ras-GTPase-activating protein (RasGAP) is an important modulator of p21ras - dependent signal transduction in Xenopus oocytes and in mammalian cells. We investigated the role of the RasGAP SH3 domain in signal transduction with a monoclonal antibody against the SH3 domain of RasGaP. This antibody prevented the activation of the maturation-promoting factor complex (cyclin B-p34cdc2) by oncogenic Ras. The antibody appears to be specific because as little as 5 ng injected per oocyte reduced the level of Cdc2 activation by 50% whereas 100 ng of nonspecific immunoglobulin G did not affect Cdc2 activation. The antibody blocked the Cdc2 activation induced by oncogenic Ras but not that induced by progesterone, which acts independently of Ras. A peptide corresponding to positions 317 to 326 of a sequence in the SH3 domain of human RasGAP blocked Cdc2 activation, whereas a peptide corresponding to positions 273 to 305 of a sequence in the N-terminal moiety of the SH3 domain of RasGAP had no effect. The antibody did not block the mitogen-activated protein (MAP) kinase cascade (activation of MAPK/ERK kinase [MEK], MAP kinase, and S6 kinase p90rsk). Surprisingly, injection of the negative MAP kinase mutant protein ERK2 K52R (containing a K-to-R mutation at position 52) blocked the Cdc2 activation induced by oncogenic Ras as well as blocking the activation of MAP kinase. Thus, MAP kinase is also implicated in the regulation of Cdc2 activity. In this study, we further investigated the regulation of the synthesis of the c-mos oncogene product, which is necessary for the activation of Cdc2. We report that the synthesis of the c-mos oncogene product, which is necessary for the activation antibody to the SH3 domain of RasGAP and by injecting the negative MAP kinase mutant protein ERK2 K52R. These results suggest that oncogenic Ras activates two signaling mechanisms: the MAP kinase cascade and a signaling pathway implicating the SH3 domain of RasGAP. These mechanisms might control Mos protein expression implicated in Cdc2 activation.
Full Text
The Full Text of this article is available as a PDF (370.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allende C. C., Hinrichs M. V., Santos E., Allende J. E. Oncogenic ras protein induces meiotic maturation of amphibian oocytes in the presence of protein synthesis inhibitors. FEBS Lett. 1988 Jul 18;234(2):426–430. doi: 10.1016/0014-5793(88)80130-3. [DOI] [PubMed] [Google Scholar]
- Barbacid M. ras genes. Annu Rev Biochem. 1987;56:779–827. doi: 10.1146/annurev.bi.56.070187.004023. [DOI] [PubMed] [Google Scholar]
- Barrett C. B., Schroetke R. M., Van der Hoorn F. A., Nordeen S. K., Maller J. L. Ha-rasVal-12,Thr-59 activates S6 kinase and p34cdc2 kinase in Xenopus oocytes: evidence for c-mosxe-dependent and -independent pathways. Mol Cell Biol. 1990 Jan;10(1):310–315. doi: 10.1128/mcb.10.1.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carnero A., Lacal J. C. Activation of intracellular kinases in Xenopus oocytes by p21ras and phospholipases: a comparative study. Mol Cell Biol. 1995 Feb;15(2):1094–1101. doi: 10.1128/mcb.15.2.1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daar I., Nebreda A. R., Yew N., Sass P., Paules R., Santos E., Wigler M., Vande Woude G. F. The ras oncoprotein and M-phase activity. Science. 1991 Jul 5;253(5015):74–76. doi: 10.1126/science.1829549. [DOI] [PubMed] [Google Scholar]
- Duchesne M., Schweighoffer F., Parker F., Clerc F., Frobert Y., Thang M. N., Tocqué B. Identification of the SH3 domain of GAP as an essential sequence for Ras-GAP-mediated signaling. Science. 1993 Jan 22;259(5094):525–528. doi: 10.1126/science.7678707. [DOI] [PubMed] [Google Scholar]
- Gotoh Y., Nishida E., Matsuda S., Shiina N., Kosako H., Shiokawa K., Akiyama T., Ohta K., Sakai H. In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase. Nature. 1991 Jan 17;349(6306):251–254. doi: 10.1038/349251a0. [DOI] [PubMed] [Google Scholar]
- Haccard O., Lewellyn A., Hartley R. S., Erikson E., Maller J. L. Induction of Xenopus oocyte meiotic maturation by MAP kinase. Dev Biol. 1995 Apr;168(2):677–682. doi: 10.1006/dbio.1995.1112. [DOI] [PubMed] [Google Scholar]
- Halenbeck R., Crosier W. J., Clark R., McCormick F., Koths K. Purification, characterization, and western blot analysis of human GTPase-activating protein from native and recombinant sources. J Biol Chem. 1990 Dec 15;265(35):21922–21928. [PubMed] [Google Scholar]
- Huang W., Kessler D. S., Erikson R. L. Biochemical and biological analysis of Mek1 phosphorylation site mutants. Mol Biol Cell. 1995 Mar;6(3):237–245. doi: 10.1091/mbc.6.3.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh T., Kaibuchi K., Masuda T., Yamamoto T., Matsuura Y., Maeda A., Shimizu K., Takai Y. A protein factor for ras p21-dependent activation of mitogen-activated protein (MAP) kinase through MAP kinase kinase. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):975–979. doi: 10.1073/pnas.90.3.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamata T., Kung H. F. Modulation of maturation and ribosomal protein S6 phosphorylation in Xenopus oocytes by microinjection of oncogenic ras protein and protein kinase C. Mol Cell Biol. 1990 Mar;10(3):880–886. doi: 10.1128/mcb.10.3.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kosako H., Gotoh Y., Nishida E. Requirement for the MAP kinase kinase/MAP kinase cascade in Xenopus oocyte maturation. EMBO J. 1994 May 1;13(9):2131–2138. doi: 10.1002/j.1460-2075.1994.tb06489.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995 Jan 27;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. [DOI] [PubMed] [Google Scholar]
- Martin T. E., Wool I. G. Active hybrid 80 s particles formed from subunits of rat, rabbit and protozoan (Tetrahymena pyriformis) ribosomes. J Mol Biol. 1969 Jul 14;43(1):151–161. doi: 10.1016/0022-2836(69)90085-0. [DOI] [PubMed] [Google Scholar]
- Matsuda S., Kosako H., Takenaka K., Moriyama K., Sakai H., Akiyama T., Gotoh Y., Nishida E. Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade. EMBO J. 1992 Mar;11(3):973–982. doi: 10.1002/j.1460-2075.1992.tb05136.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matten W., Daar I., Vande Woude G. F. Protein kinase A acts at multiple points to inhibit Xenopus oocyte maturation. Mol Cell Biol. 1994 Jul;14(7):4419–4426. doi: 10.1128/mcb.14.7.4419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGlade J., Brunkhorst B., Anderson D., Mbamalu G., Settleman J., Dedhar S., Rozakis-Adcock M., Chen L. B., Pawson T. The N-terminal region of GAP regulates cytoskeletal structure and cell adhesion. EMBO J. 1993 Aug;12(8):3073–3081. doi: 10.1002/j.1460-2075.1993.tb05976.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medema R. H., de Laat W. L., Martin G. A., McCormick F., Bos J. L. GTPase-activating protein SH2-SH3 domains induce gene expression in a Ras-dependent fashion. Mol Cell Biol. 1992 Aug;12(8):3425–3430. doi: 10.1128/mcb.12.8.3425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mollat P., Zhang G. Y., Frobert Y., Zhang Y. H., Fournier A., Grassi J., Thang M. N. Non-neutralizing monoclonal antibodies against Ras GTPase-activating protein: production, characterization and use in an enzyme immunometric assay. Biotechnology (N Y) 1992 Oct;10(10):1151–1156. doi: 10.1038/nbt1092-1151. [DOI] [PubMed] [Google Scholar]
- Nebreda A. R., Porras A., Santos E. p21ras-induced meiotic maturation of Xenopus oocytes in the absence of protein synthesis: MPF activation is preceded by activation of MAP and S6 kinases. Oncogene. 1993 Feb;8(2):467–477. [PubMed] [Google Scholar]
- Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
- Pomerance M., Schweighoffer F., Tocque B., Pierre M. Stimulation of mitogen-activated protein kinase by oncogenic Ras p21 in Xenopus oocytes. Requirement for Ras p21-GTPase-activating protein interaction. J Biol Chem. 1992 Aug 15;267(23):16155–16160. [PubMed] [Google Scholar]
- Posada J., Yew N., Ahn N. G., Vande Woude G. F., Cooper J. A. Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Mol Cell Biol. 1993 Apr;13(4):2546–2553. doi: 10.1128/mcb.13.4.2546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rey I., Soubigou P., Debussche L., David C., Morgat A., Bost P. E., Mayaux J. F., Tocque B. Antibodies to synthetic peptide from the residue 33 to 42 domain of c-Ha-ras p21 block reconstitution of the protein with different effectors. Mol Cell Biol. 1989 Sep;9(9):3904–3910. doi: 10.1128/mcb.9.9.3904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robbins D. J., Zhen E., Owaki H., Vanderbilt C. A., Ebert D., Geppert T. D., Cobb M. H. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J Biol Chem. 1993 Mar 5;268(7):5097–5106. [PubMed] [Google Scholar]
- Sagata N., Oskarsson M., Copeland T., Brumbaugh J., Vande Woude G. F. Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature. 1988 Oct 6;335(6190):519–525. doi: 10.1038/335519a0. [DOI] [PubMed] [Google Scholar]
- Shou C., Farnsworth C. L., Neel B. G., Feig L. A. Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21. Nature. 1992 Jul 23;358(6384):351–354. doi: 10.1038/358351a0. [DOI] [PubMed] [Google Scholar]
- Solomon M. J. Activation of the various cyclin/cdc2 protein kinases. Curr Opin Cell Biol. 1993 Apr;5(2):180–186. doi: 10.1016/0955-0674(93)90100-5. [DOI] [PubMed] [Google Scholar]
- Toru-Delbauffe D., Gavaret J. M., Jacquemin C., Matricon C., Pomerance M., Pierre M. Properties of the 12-O-tetradecanoylphorbol-13-acetate-stimulated S6 kinase from rat astroglial cells. J Neurochem. 1988 Nov;51(5):1448–1454. doi: 10.1111/j.1471-4159.1988.tb01110.x. [DOI] [PubMed] [Google Scholar]
- Trahey M., McCormick F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science. 1987 Oct 23;238(4826):542–545. doi: 10.1126/science.2821624. [DOI] [PubMed] [Google Scholar]
- White M. A., Nicolette C., Minden A., Polverino A., Van Aelst L., Karin M., Wigler M. H. Multiple Ras functions can contribute to mammalian cell transformation. Cell. 1995 Feb 24;80(4):533–541. doi: 10.1016/0092-8674(95)90507-3. [DOI] [PubMed] [Google Scholar]
- Xu G. F., O'Connell P., Viskochil D., Cawthon R., Robertson M., Culver M., Dunn D., Stevens J., Gesteland R., White R. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell. 1990 Aug 10;62(3):599–608. doi: 10.1016/0092-8674(90)90024-9. [DOI] [PubMed] [Google Scholar]
- Yamamori B., Kuroda S., Shimizu K., Fukui K., Ohtsuka T., Takai Y. Purification of a Ras-dependent mitogen-activated protein kinase kinase kinase from bovine brain cytosol and its identification as a complex of B-Raf and 14-3-3 proteins. J Biol Chem. 1995 May 19;270(20):11723–11726. doi: 10.1074/jbc.270.20.11723. [DOI] [PubMed] [Google Scholar]
- Yang Y. S., Garbay C., Duchesne M., Cornille F., Jullian N., Fromage N., Tocque B., Roques B. P. Solution structure of GAP SH3 domain by 1H NMR and spatial arrangement of essential Ras signaling-involved sequence. EMBO J. 1994 Mar 15;13(6):1270–1279. doi: 10.1002/j.1460-2075.1994.tb06379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yatani A., Okabe K., Polakis P., Halenbeck R., McCormick F., Brown A. M. ras p21 and GAP inhibit coupling of muscarinic receptors to atrial K+ channels. Cell. 1990 Jun 1;61(5):769–776. doi: 10.1016/0092-8674(90)90187-j. [DOI] [PubMed] [Google Scholar]
- Yew N., Mellini M. L., Vande Woude G. F. Meiotic initiation by the mos protein in Xenopus. Nature. 1992 Feb 13;355(6361):649–652. doi: 10.1038/355649a0. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Zhang G., Mollat P., Carles C., Riva M., Frobert Y., Malassiné A., Rostène W., Thang D. C., Beltchev B. Purification, characterization, and cellular localization of the 100-kDa human placental GTPase-activating protein. J Biol Chem. 1993 Sep 5;268(25):18875–18881. [PubMed] [Google Scholar]