Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Jul;16(7):3615–3625. doi: 10.1128/mcb.16.7.3615

DNA rearrangements associated with multiple consecutive directed antigenic switches in Trypanosoma brucei.

M Navarro 1, G A Cross 1
PMCID: PMC231357  PMID: 8668178

Abstract

Changes in variant surface glycoprotein (Vsg) expression allow Trypanosoma brucei to elude the immune response. The expressed vsg is always located at the telomeric end of a polycistronic transcription unit known as an expression site (ES). Although there are many ESs, only one is active at any particular time. The mechanisms regulating ES transcription and switching are unknown. Chromosome rearrangements within or upstream of the ES have been described to occur in occasional switch events, but no changes have been consistently associated with switching. We inserted the drug resistance genes neo and ble, conferring resistance to G418 and phleomycin, respectively, 1 kb downstream of "silent" ES promoters. This demonstrated that short-range transcription could be achieved from a silent ES promoter. From one initial transformant clone, panels of independent consecutive on-off-on switch clones were generated and analyzed. The first activation of the neo-targeted ES was always associated with deletion of the upstream tandem promoter in this ES, but no further rearrangements were detected in consecutive off-on switches of this ES. On the other hand, direct analysis of ES promoters showed that deletions and duplications occurred elsewhere. Activation of a ble-tagged 300-kb chromosome could not be achieved, but phleomycin-resistant clones could be obtained. One such clone arose from recombination between three ESs. Taken together, our experiments suggest that ES switching may occur after a period of chromosomal interactivity that may or may not leave tangible evidence in the form of detectable sequence changes.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandre S., Guyaux M., Murphy N. B., Coquelet H., Pays A., Steinert M., Pays E. Putative genes of a variant-specific antigen gene transcription unit in Trypanosoma brucei. Mol Cell Biol. 1988 Jun;8(6):2367–2378. doi: 10.1128/mcb.8.6.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernards A., De Lange T., Michels P. A., Liu A. Y., Huisman M. J., Borst P. Two modes of activation of a single surface antigen gene of Trypanosoma brucei. Cell. 1984 Jan;36(1):163–170. doi: 10.1016/0092-8674(84)90085-0. [DOI] [PubMed] [Google Scholar]
  3. Borst P., Gommers-Ampt J. H., Ligtenberg M. J., Rudenko G., Kieft R., Taylor M. C., Blundell P. A., van Leeuwen F. Control of antigenic variation in African trypanosomes. Cold Spring Harb Symp Quant Biol. 1993;58:105–114. doi: 10.1101/sqb.1993.058.01.014. [DOI] [PubMed] [Google Scholar]
  4. Carruthers V. B., Cross G. A. High-efficiency clonal growth of bloodstream- and insect-form Trypanosoma brucei on agarose plates. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8818–8821. doi: 10.1073/pnas.89.18.8818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carruthers V. B., van der Ploeg L. H., Cross G. A. DNA-mediated transformation of bloodstream-form Trypanosoma brucei. Nucleic Acids Res. 1993 May 25;21(10):2537–2538. doi: 10.1093/nar/21.10.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chung H. M., Shea C., Fields S., Taub R. N., Van der Ploeg L. H., Tse D. B. Architectural organization in the interphase nucleus of the protozoan Trypanosoma brucei: location of telomeres and mini-chromosomes. EMBO J. 1990 Aug;9(8):2611–2619. doi: 10.1002/j.1460-2075.1990.tb07443.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cook P. R. RNA polymerase: structural determinant of the chromatin loop and the chromosome. Bioessays. 1994 Jun;16(6):425–430. doi: 10.1002/bies.950160611. [DOI] [PubMed] [Google Scholar]
  8. Cross G. A. Antigenic variation in trypanosomes: secrets surface slowly. Bioessays. 1996 Apr;18(4):283–291. doi: 10.1002/bies.950180406. [DOI] [PubMed] [Google Scholar]
  9. Cross G. A. Cellular and genetic aspects of antigenic variation in trypanosomes. Annu Rev Immunol. 1990;8:83–110. doi: 10.1146/annurev.iy.08.040190.000503. [DOI] [PubMed] [Google Scholar]
  10. Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
  11. Crozatier M., Van der Ploeg L. H., Johnson P. J., Gommers-Ampt J., Borst P. Structure of a telomeric expression site for variant specific surface antigens in Trypanosoma brucei. Mol Biochem Parasitol. 1990 Aug;42(1):1–12. doi: 10.1016/0166-6851(90)90107-w. [DOI] [PubMed] [Google Scholar]
  12. Cully D. F., Gibbs C. P., Cross G. A. Identification of proteins encoded by variant surface glycoprotein expression site-associated genes in Trypanosoma brucei. Mol Biochem Parasitol. 1986 Nov;21(2):189–197. doi: 10.1016/0166-6851(86)90022-8. [DOI] [PubMed] [Google Scholar]
  13. Cully D. F., Ip H. S., Cross G. A. Coordinate transcription of variant surface glycoprotein genes and an expression site associated gene family in Trypanosoma brucei. Cell. 1985 Aug;42(1):173–182. doi: 10.1016/s0092-8674(85)80113-6. [DOI] [PubMed] [Google Scholar]
  14. Daï Do Thi C., Aerts D., Steinert M., Pays E. High homology between variant surface glycoprotein gene expression sites of Trypanosoma brucei and Trypanosoma gambiense. Mol Biochem Parasitol. 1991 Oct;48(2):199–210. doi: 10.1016/0166-6851(91)90115-m. [DOI] [PubMed] [Google Scholar]
  15. De Lange T., Borst P. Genomic environment of the expression-linked extra copies of genes for surface antigens of Trypanosoma brucei resembles the end of a chromosome. Nature. 1982 Sep 30;299(5882):451–453. doi: 10.1038/299451a0. [DOI] [PubMed] [Google Scholar]
  16. Eid J., Sollner-Webb B. Stable integrative transformation of Trypanosoma brucei that occurs exclusively by homologous recombination. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2118–2121. doi: 10.1073/pnas.88.6.2118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Florent I., Baltz T., Raibaud A., Eisen H. On the role of repeated sequences 5' to variant surface glycoprotein genes in African trypanosomes. Gene. 1987;53(1):55–62. doi: 10.1016/0378-1119(87)90092-8. [DOI] [PubMed] [Google Scholar]
  18. Gottesdiener K. M., Goriparthi L., Masucci J. P., Van der Ploeg L. H. A proposed mechanism for promoter-associated DNA rearrangement events at a variant surface glycoprotein gene expression site. Mol Cell Biol. 1992 Oct;12(10):4784–4795. doi: 10.1128/mcb.12.10.4784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gottesdiener K., Chung H. M., Brown S. D., Lee M. G., Van der Ploeg L. H. Characterization of VSG gene expression site promoters and promoter-associated DNA rearrangement events. Mol Cell Biol. 1991 May;11(5):2467–2480. doi: 10.1128/mcb.11.5.2467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gottesdiener K., Garciá-Anoveros J., Lee M. G., Van der Ploeg L. H. Chromosome organization of the protozoan Trypanosoma brucei. Mol Cell Biol. 1990 Nov;10(11):6079–6083. doi: 10.1128/mcb.10.11.6079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hirumi H., Hirumi K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol. 1989 Dec;75(6):985–989. [PubMed] [Google Scholar]
  22. Hug M., Carruthers V. B., Hartmann C., Sherman D. S., Cross G. A., Clayton C. A possible role for the 3'-untranslated region in developmental regulation in Trypanosoma brucei. Mol Biochem Parasitol. 1993 Sep;61(1):87–95. doi: 10.1016/0166-6851(93)90161-p. [DOI] [PubMed] [Google Scholar]
  23. Jefferies D., Tebabi P., Le Ray D., Pays E. The ble resistance gene as a new selectable marker for Trypanosoma brucei: fly transmission of stable procyclic transformants to produce antibiotic resistant bloodstream forms. Nucleic Acids Res. 1993 Jan 25;21(2):191–195. doi: 10.1093/nar/21.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Johnson P. J., Kooter J. M., Borst P. Inactivation of transcription by UV irradiation of T. brucei provides evidence for a multicistronic transcription unit including a VSG gene. Cell. 1987 Oct 23;51(2):273–281. doi: 10.1016/0092-8674(87)90154-1. [DOI] [PubMed] [Google Scholar]
  25. Kooter J. M., Borst P. Alpha-amanitin-insensitive transcription of variant surface glycoprotein genes provides further evidence for discontinuous transcription in trypanosomes. Nucleic Acids Res. 1984 Dec 21;12(24):9457–9472. doi: 10.1093/nar/12.24.9457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kooter J. M., van der Spek H. J., Wagter R., d'Oliveira C. E., van der Hoeven F., Johnson P. J., Borst P. The anatomy and transcription of a telomeric expression site for variant-specific surface antigens in T. brucei. Cell. 1987 Oct 23;51(2):261–272. doi: 10.1016/0092-8674(87)90153-x. [DOI] [PubMed] [Google Scholar]
  27. Laemmli U. K., Käs E., Poljak L., Adachi Y. Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr Opin Genet Dev. 1992 Apr;2(2):275–285. doi: 10.1016/s0959-437x(05)80285-0. [DOI] [PubMed] [Google Scholar]
  28. Lamont G. S., Tucker R. S., Cross G. A. Analysis of antigen switching rates in Trypanosoma brucei. Parasitology. 1986 Apr;92(Pt 2):355–367. doi: 10.1017/s003118200006412x. [DOI] [PubMed] [Google Scholar]
  29. Laurent M., Pays E., Van der Werf A., Aerts D., Magnus E., Van Meirvenne N., Steinert M. Translocation alters the activation rate of a trypanosome surface antigen gene. Nucleic Acids Res. 1984 Nov 26;12(22):8319–8328. doi: 10.1093/nar/12.22.8319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Liu A. Y., Van der Ploeg L. H., Rijsewijk F. A., Borst P. The transposition unit of variant surface glycoprotein gene 118 of Trypanosoma brucei. Presence of repeated elements at its border and absence of promoter-associated sequences. J Mol Biol. 1983 Jun 15;167(1):57–75. doi: 10.1016/s0022-2836(83)80034-5. [DOI] [PubMed] [Google Scholar]
  31. Michels P. A., Van der Ploeg L. H., Liu A. Y., Borst P. The inactivation and reactivation of an expression-linked gene copy for a variant surface glycoprotein in Trypanosoma brucei. EMBO J. 1984 Jun;3(6):1345–1351. doi: 10.1002/j.1460-2075.1984.tb01975.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Murphy N. B., Muthiani A. M., Peregrine A. S. Use of an in vivo system to determine the G418 resistance phenotype of bloodstream-form Trypanosoma brucei brucei transfectants. Antimicrob Agents Chemother. 1993 May;37(5):1167–1170. doi: 10.1128/aac.37.5.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Myler P. J., Aline R. F., Jr, Scholler J. K., Stuart K. D. Changes in telomere length associated with antigenic variation in Trypanosoma brucei. Mol Biochem Parasitol. 1988 Jun;29(2-3):243–250. doi: 10.1016/0166-6851(88)90079-5. [DOI] [PubMed] [Google Scholar]
  34. Navarro M., Liu J., Muthui D., Ortiz G., Segovia M., Hamers R. Inverted repeat structure and homologous sequences in the LD1 amplicons of Leishmania spp. Mol Biochem Parasitol. 1994 Nov;68(1):69–80. doi: 10.1016/0166-6851(94)00147-2. [DOI] [PubMed] [Google Scholar]
  35. Pays E., Coquelet H., Tebabi P., Pays A., Jefferies D., Steinert M., Koenig E., Williams R. O., Roditi I. Trypanosoma brucei: constitutive activity of the VSG and procyclin gene promoters. EMBO J. 1990 Oct;9(10):3145–3151. doi: 10.1002/j.1460-2075.1990.tb07512.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pays E., Tebabi P., Pays A., Coquelet H., Revelard P., Salmon D., Steinert M. The genes and transcripts of an antigen gene expression site from T. brucei. Cell. 1989 Jun 2;57(5):835–845. doi: 10.1016/0092-8674(89)90798-8. [DOI] [PubMed] [Google Scholar]
  37. Pays E., Vanhamme L., Berberof M. Genetic controls for the expression of surface antigens in African trypanosomes. Annu Rev Microbiol. 1994;48:25–52. doi: 10.1146/annurev.mi.48.100194.000325. [DOI] [PubMed] [Google Scholar]
  38. Rudenko G., Blundell P. A., Dirks-Mulder A., Kieft R., Borst P. A ribosomal DNA promoter replacing the promoter of a telomeric VSG gene expression site can be efficiently switched on and off in T. brucei. Cell. 1995 Nov 17;83(4):547–553. doi: 10.1016/0092-8674(95)90094-2. [DOI] [PubMed] [Google Scholar]
  39. Rudenko G., Blundell P. A., Taylor M. C., Kieft R., Borst P. VSG gene expression site control in insect form Trypanosoma brucei. EMBO J. 1994 Nov 15;13(22):5470–5482. doi: 10.1002/j.1460-2075.1994.tb06882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shah J. S., Young J. R., Kimmel B. E., Iams K. P., Williams R. O. The 5' flanking sequence of a Trypanosoma brucei variable surface glycoprotein gene. Mol Biochem Parasitol. 1987 Jun;24(2):163–174. doi: 10.1016/0166-6851(87)90103-4. [DOI] [PubMed] [Google Scholar]
  41. Shea C., Lee M. G., Van der Ploeg L. H. VSG gene 118 is transcribed from a cotransposed pol I-like promoter. Cell. 1987 Aug 14;50(4):603–612. doi: 10.1016/0092-8674(87)90033-x. [DOI] [PubMed] [Google Scholar]
  42. Timmers H. T., de Lange T., Kooter J. M., Borst P. Coincident multiple activations of the same surface antigen gene in Trypanosoma brucei. J Mol Biol. 1987 Mar 5;194(1):81–90. doi: 10.1016/0022-2836(87)90717-0. [DOI] [PubMed] [Google Scholar]
  43. Van der Ploeg L. H., Cornelissen A. W., Michels P. A., Borst P. Chromosome rearrangements in Trypanosoma brucei. Cell. 1984 Nov;39(1):213–221. doi: 10.1016/0092-8674(84)90207-1. [DOI] [PubMed] [Google Scholar]
  44. Van der Ploeg L. H., Smith C. L., Polvere R. I., Gottesdiener K. M. Improved separation of chromosome-sized DNA from Trypanosoma brucei, stock 427-60. Nucleic Acids Res. 1989 Apr 25;17(8):3217–3227. doi: 10.1093/nar/17.8.3217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Van der Werf A., Van Assel S., Aerts D., Steinert M., Pays E. Telomere interactions may condition the programming of antigen expression in Trypanosoma brucei. EMBO J. 1990 Apr;9(4):1035–1040. doi: 10.1002/j.1460-2075.1990.tb08207.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vanhamme L., Pays E. Control of gene expression in trypanosomes. Microbiol Rev. 1995 Jun;59(2):223–240. doi: 10.1128/mr.59.2.223-240.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zomerdijk J. C., Kieft R., Duyndam M., Shiels P. G., Borst P. Antigenic variation in Trypanosoma brucei: a telomeric expression site for variant-specific surface glycoprotein genes with novel features. Nucleic Acids Res. 1991 Apr 11;19(7):1359–1368. doi: 10.1093/nar/19.7.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zomerdijk J. C., Kieft R., Shiels P. G., Borst P. Alpha-amanitin-resistant transcription units in trypanosomes: a comparison of promoter sequences for a VSG gene expression site and for the ribosomal RNA genes. Nucleic Acids Res. 1991 Oct 11;19(19):5153–5158. doi: 10.1093/nar/19.19.5153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zomerdijk J. C., Ouellette M., ten Asbroek A. L., Kieft R., Bommer A. M., Clayton C. E., Borst P. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei. EMBO J. 1990 Sep;9(9):2791–2801. doi: 10.1002/j.1460-2075.1990.tb07467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. ten Asbroek A. L., Mol C. A., Kieft R., Borst P. Stable transformation of Trypanosoma brucei. Mol Biochem Parasitol. 1993 May;59(1):133–142. doi: 10.1016/0166-6851(93)90014-o. [DOI] [PubMed] [Google Scholar]
  51. van den Hoff M. J., Moorman A. F., Lamers W. H. Electroporation in 'intracellular' buffer increases cell survival. Nucleic Acids Res. 1992 Jun 11;20(11):2902–2902. doi: 10.1093/nar/20.11.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES