Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Jul;16(7):3909–3922. doi: 10.1128/mcb.16.7.3909

Distinct regulatory elements control muscle-specific, fiber-type-selective, and axially graded expression of a myosin light-chain gene in transgenic mice.

M V Rao 1, M J Donoghue 1, J P Merlie 1, J R Sanes 1
PMCID: PMC231388  PMID: 8668209

Abstract

The fast alkali myosin light chain 1f/3f (MLC1f/3f) gene is developmentally regulated, muscle specific, and preferentially expressed in fast-twitch fibers. A transgene containing an MLC1f promoter plus a downstream enhancer replicates this pattern of expression in transgenic mice. Unexpectedly, this transgene is also expressed in a striking (approximately 100-fold) rostrocaudal gradient in axial muscles (reviewed by J. R. Sanes, M. J. Donoghue, M. C. Wallace, and J. P. Merlie, Cold Spring Harbor Symp. Quant. Biol. 57:451-460, 1992). Here, we analyzed the expression of mutated transgenes to map sites necessary for muscle-specific, fiber-type-selective, and axially graded expression. We show that two E boxes (myogenic factor binding sites), a homeodomain (hox) protein binding site, and an MEF2 site, which are clustered in an approximately 170-bp core enhancer, are all necessary for maximal transgene activity in muscle but not for fiber-type- or position-dependent expression. A distinct region within the core enhancer promotes selective expression of the transgene in fast-twitch muscles. Sequences that flank the core enhancer are also necessary for high-level activity in transgenic mice but have little influence on activity in transfected cells, suggesting the presence of regions resembling matrix attachment sites. Truncations of the MLC1f promoter affected position-dependent expression of the transgene, revealing distinct regions that repress transgene activity in neck muscles and promote differential expression among intercostal muscles. Thus, the whole-body gradient of expression displayed by the complete transgene may reflect the integrated activities of discrete elements that regulate expression in subsets of muscles. Finally, we show that transgene activity is not significantly affected by deletion or overexpression of the myoD gene, suggesting that intermuscular differences in myogenic factor levels do not affect patterns of transgene expression. Together, our results provide evidence for at least nine distinct sites that exert major effects on the levels and patterns of MLC1f expression in adult muscles.

Full Text

The Full Text of this article is available as a PDF (787.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amacher S. L., Buskin J. N., Hauschka S. D. Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. Mol Cell Biol. 1993 May;13(5):2753–2764. doi: 10.1128/mcb.13.5.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronow B. J., Ebert C. A., Valerius M. T., Potter S. S., Wiginton D. A., Witte D. P., Hutton J. J. Dissecting a locus control region: facilitation of enhancer function by extended enhancer-flanking sequences. Mol Cell Biol. 1995 Feb;15(2):1123–1135. doi: 10.1128/mcb.15.2.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asakura A., Fujisawa-Sehara A., Komiya T., Nabeshima Y., Nabeshima Y. MyoD and myogenin act on the chicken myosin light-chain 1 gene as distinct transcriptional factors. Mol Cell Biol. 1993 Nov;13(11):7153–7162. doi: 10.1128/mcb.13.11.7153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banerjee-Basu S., Buonanno A. cis-acting sequences of the rat troponin I slow gene confer tissue- and development-specific transcription in cultured muscle cells as well as fiber type specificity in transgenic mice. Mol Cell Biol. 1993 Nov;13(11):7019–7028. doi: 10.1128/mcb.13.11.7019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Billeter R., Quitschke W., Paterson B. M. Approximately 1 kilobase of sequence 5' to the two myosin light-chain 1f/3f gene cap sites is sufficient for differentiation-dependent expression. Mol Cell Biol. 1988 Mar;8(3):1361–1365. doi: 10.1128/mcb.8.3.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Black B. L., Martin J. F., Olson E. N. The mouse MRF4 promoter is trans-activated directly and indirectly by muscle-specific transcription factors. J Biol Chem. 1995 Feb 17;270(7):2889–2892. doi: 10.1074/jbc.270.7.2889. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Braun T., Tannich E., Buschhausen-Denker G., Arnold H. H. Promoter upstream elements of the chicken cardiac myosin light-chain 2-A gene interact with trans-acting regulatory factors for muscle-specific transcription. Mol Cell Biol. 1989 Jun;9(6):2513–2525. doi: 10.1128/mcb.9.6.2513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brennan K. J., Hardeman E. C. Quantitative analysis of the human alpha-skeletal actin gene in transgenic mice. J Biol Chem. 1993 Jan 5;268(1):719–725. [PubMed] [Google Scholar]
  10. Buckingham M. Making muscle in mammals. Trends Genet. 1992 Apr;8(4):144–148. doi: 10.1016/0168-9525(92)90373-C. [DOI] [PubMed] [Google Scholar]
  11. Buskin J. N., Hauschka S. D. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol Cell Biol. 1989 Jun;9(6):2627–2640. doi: 10.1128/mcb.9.6.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cheng T. C., Wallace M. C., Merlie J. P., Olson E. N. Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science. 1993 Jul 9;261(5118):215–218. doi: 10.1126/science.8392225. [DOI] [PubMed] [Google Scholar]
  14. Christ B., Ordahl C. P. Early stages of chick somite development. Anat Embryol (Berl) 1995 May;191(5):381–396. doi: 10.1007/BF00304424. [DOI] [PubMed] [Google Scholar]
  15. Corin S. J., Levitt L. K., O'Mahoney J. V., Joya J. E., Hardeman E. C., Wade R. Delineation of a slow-twitch-myofiber-specific transcriptional element by using in vivo somatic gene transfer. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6185–6189. doi: 10.1073/pnas.92.13.6185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cserjesi P., Olson E. N. Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products. Mol Cell Biol. 1991 Oct;11(10):4854–4862. doi: 10.1128/mcb.11.10.4854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cunningham J. M., Kaiser K. K., Sanes J. R. Rostrocaudal variation of fiber type composition in rat intercostal muscles. Histochemistry. 1991;95(5):513–517. doi: 10.1007/BF00315748. [DOI] [PubMed] [Google Scholar]
  18. Daubas P., Klarsfeld A., Garner I., Pinset C., Cox R., Buckingham M. Functional activity of the two promoters of the myosin alkali light chain gene in primary muscle cell cultures: comparison with other muscle gene promoters and other culture systems. Nucleic Acids Res. 1988 Feb 25;16(4):1251–1271. doi: 10.1093/nar/16.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Daubas P., Robert B., Garner I., Buckingham M. A comparison between mammalian and avian fast skeletal muscle alkali myosin light chain genes: regulatory implications. Nucleic Acids Res. 1985 Jul 11;13(13):4623–4643. doi: 10.1093/nar/13.13.4623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Donoghue M. J., Alvarez J. D., Merlie J. P., Sanes J. R. Fiber type- and position-dependent expression of a myosin light chain-CAT transgene detected with a novel histochemical stain for CAT. J Cell Biol. 1991 Oct;115(2):423–434. doi: 10.1083/jcb.115.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Donoghue M. J., Merlie J. P., Rosenthal N., Sanes J. R. Rostrocaudal gradient of transgene expression in adult skeletal muscle. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5847–5851. doi: 10.1073/pnas.88.13.5847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Donoghue M. J., Morris-Valero R., Johnson Y. R., Merlie J. P., Sanes J. R. Mammalian muscle cells bear a cell-autonomous, heritable memory of their rostrocaudal position. Cell. 1992 Apr 3;69(1):67–77. doi: 10.1016/0092-8674(92)90119-w. [DOI] [PubMed] [Google Scholar]
  24. Donoghue M. J., Patton B. L., Sanes J. R., Merlie J. P. An axial gradient of transgene methylation in murine skeletal muscle: genomic imprint of rostrocaudal position. Development. 1992 Dec;116(4):1101–1112. doi: 10.1242/dev.116.4.1101. [DOI] [PubMed] [Google Scholar]
  25. Donoghue M. J., Sanes J. R. All muscles are not created equal. Trends Genet. 1994 Nov;10(11):396–401. doi: 10.1016/0168-9525(94)90056-6. [DOI] [PubMed] [Google Scholar]
  26. Donoghue M., Ernst H., Wentworth B., Nadal-Ginard B., Rosenthal N. A muscle-specific enhancer is located at the 3' end of the myosin light-chain 1/3 gene locus. Genes Dev. 1988 Dec;2(12B):1779–1790. doi: 10.1101/gad.2.12b.1779. [DOI] [PubMed] [Google Scholar]
  27. Forrester W. C., van Genderen C., Jenuwein T., Grosschedl R. Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science. 1994 Aug 26;265(5176):1221–1225. doi: 10.1126/science.8066460. [DOI] [PubMed] [Google Scholar]
  28. Fujisawa-Sehara A., Nabeshima Y., Komiya T., Uetsuki T., Asakura A., Nabeshima Y. Differential trans-activation of muscle-specific regulatory elements including the mysosin light chain box by chicken MyoD, myogenin, and MRF4. J Biol Chem. 1992 May 15;267(14):10031–10038. [PubMed] [Google Scholar]
  29. Gehring W. J., Qian Y. Q., Billeter M., Furukubo-Tokunaga K., Schier A. F., Resendez-Perez D., Affolter M., Otting G., Wüthrich K. Homeodomain-DNA recognition. Cell. 1994 Jul 29;78(2):211–223. doi: 10.1016/0092-8674(94)90292-5. [DOI] [PubMed] [Google Scholar]
  30. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gossett L. A., Kelvin D. J., Sternberg E. A., Olson E. N. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol. 1989 Nov;9(11):5022–5033. doi: 10.1128/mcb.9.11.5022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Grieshammer U., Sassoon D., Rosenthal N. A transgene target for positional regulators marks early rostrocaudal specification of myogenic lineages. Cell. 1992 Apr 3;69(1):79–93. doi: 10.1016/0092-8674(92)90120-2. [DOI] [PubMed] [Google Scholar]
  33. Haack H., Gruss P. The establishment of murine Hox-1 expression domains during patterning of the limb. Dev Biol. 1993 Jun;157(2):410–422. doi: 10.1006/dbio.1993.1145. [DOI] [PubMed] [Google Scholar]
  34. Hallauer P. L., Bradshaw H. L., Hastings K. E. Complex fiber-type-specific expression of fast skeletal muscle troponin I gene constructs in transgenic mice. Development. 1993 Nov;119(3):691–701. doi: 10.1242/dev.119.3.691. [DOI] [PubMed] [Google Scholar]
  35. Hallauer P. L., Hastings K. E., Peterson A. C. Fast skeletal muscle-specific expression of a quail troponin I gene in transgenic mice. Mol Cell Biol. 1988 Dec;8(12):5072–5079. doi: 10.1128/mcb.8.12.5072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Hanley T., Merlie J. P. Transgene detection in unpurified mouse tail DNA by polymerase chain reaction. Biotechniques. 1991 Jan;10(1):56–56. [PubMed] [Google Scholar]
  37. Hayashi S., Scott M. P. What determines the specificity of action of Drosophila homeodomain proteins? Cell. 1990 Nov 30;63(5):883–894. doi: 10.1016/0092-8674(90)90492-w. [DOI] [PubMed] [Google Scholar]
  38. Hemsley A., Arnheim N., Toney M. D., Cortopassi G., Galas D. J. A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res. 1989 Aug 25;17(16):6545–6551. doi: 10.1093/nar/17.16.6545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Hoey T., Levine M. Divergent homeo box proteins recognize similar DNA sequences in Drosophila. Nature. 1988 Apr 28;332(6167):858–861. doi: 10.1038/332858a0. [DOI] [PubMed] [Google Scholar]
  40. Hughes S. M., Taylor J. M., Tapscott S. J., Gurley C. M., Carter W. J., Peterson C. A. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development. 1993 Aug;118(4):1137–1147. doi: 10.1242/dev.118.4.1137. [DOI] [PubMed] [Google Scholar]
  41. Johnson J. E., Wold B. J., Hauschka S. D. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol. 1989 Aug;9(8):3393–3399. doi: 10.1128/mcb.9.8.3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Kelly R., Alonso S., Tajbakhsh S., Cossu G., Buckingham M. Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol. 1995 Apr;129(2):383–396. doi: 10.1083/jcb.129.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Knotts S., Rindt H., Neumann J., Robbins J. In vivo regulation of the mouse beta myosin heavy chain gene. J Biol Chem. 1994 Dec 9;269(49):31275–31282. [PubMed] [Google Scholar]
  44. Kothary R., Clapoff S., Darling S., Perry M. D., Moran L. A., Rossant J. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development. 1989 Apr;105(4):707–714. doi: 10.1242/dev.105.4.707. [DOI] [PubMed] [Google Scholar]
  45. Lamson G., Stockdale F. E. Developmental and muscle-specific changes in methylation of the myosin light chain LC1f and LC3f promoters during avian myogenesis. Dev Biol. 1989 Mar;132(1):62–68. doi: 10.1016/0012-1606(89)90204-2. [DOI] [PubMed] [Google Scholar]
  46. Laskowski M. B., Sanes J. R. Topographic mapping of motor pools onto skeletal muscles. J Neurosci. 1987 Jan;7(1):252–260. doi: 10.1523/JNEUROSCI.07-01-00252.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Laskowski M. B., Sanes J. R. Topographically selective reinnervation of adult mammalian skeletal muscles. J Neurosci. 1988 Aug;8(8):3094–3099. doi: 10.1523/JNEUROSCI.08-08-03094.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Lassar A. B., Buskin J. N., Lockshon D., Davis R. L., Apone S., Hauschka S. D., Weintraub H. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell. 1989 Sep 8;58(5):823–831. doi: 10.1016/0092-8674(89)90935-5. [DOI] [PubMed] [Google Scholar]
  49. Levi G., Corsetti M. T., Boncinelli E., Corte G. Changes in the prevalence of an homeobox gene product during muscle differentiation. Mech Dev. 1993 Oct;43(2-3):111–120. doi: 10.1016/0925-4773(93)90029-w. [DOI] [PubMed] [Google Scholar]
  50. Levitt L. K., O'Mahoney J. V., Brennan K. J., Joya J. E., Zhu L., Wade R. P., Hardeman E. C. The human troponin I slow promoter directs slow fiber-specific expression in transgenic mice. DNA Cell Biol. 1995 Jul;14(7):599–607. doi: 10.1089/dna.1995.14.599. [DOI] [PubMed] [Google Scholar]
  51. Li H., Capetanaki Y. An E box in the desmin promoter cooperates with the E box and MEF-2 sites of a distal enhancer to direct muscle-specific transcription. EMBO J. 1994 Aug 1;13(15):3580–3589. doi: 10.1002/j.1460-2075.1994.tb06665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Lyons G. E., Ontell M., Cox R., Sassoon D., Buckingham M. The expression of myosin genes in developing skeletal muscle in the mouse embryo. J Cell Biol. 1990 Oct;111(4):1465–1476. doi: 10.1083/jcb.111.4.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  54. Mercer E. H., Hoyle G. W., Kapur R. P., Brinster R. L., Palmiter R. D. The dopamine beta-hydroxylase gene promoter directs expression of E. coli lacZ to sympathetic and other neurons in adult transgenic mice. Neuron. 1991 Nov;7(5):703–716. doi: 10.1016/0896-6273(91)90274-4. [DOI] [PubMed] [Google Scholar]
  55. Merlie J. P., Kornhauser J. M. Neural regulation of gene expression by an acetylcholine receptor promoter in muscle of transgenic mice. Neuron. 1989 Apr;2(4):1295–1300. doi: 10.1016/0896-6273(89)90067-6. [DOI] [PubMed] [Google Scholar]
  56. Merlie J. P., Mudd J., Cheng T. C., Olson E. N. Myogenin and acetylcholine receptor alpha gene promoters mediate transcriptional regulation in response to motor innervation. J Biol Chem. 1994 Jan 28;269(4):2461–2467. [PubMed] [Google Scholar]
  57. Michelson A. M. Muscle pattern diversification in Drosophila is determined by the autonomous function of homeotic genes in the embryonic mesoderm. Development. 1994 Apr;120(4):755–768. doi: 10.1242/dev.120.4.755. [DOI] [PubMed] [Google Scholar]
  58. Miner J. H., Miller J. B., Wold B. J. Skeletal muscle phenotypes initiated by ectopic MyoD in transgenic mouse heart. Development. 1992 Apr;114(4):853–860. doi: 10.1242/dev.114.4.853. [DOI] [PubMed] [Google Scholar]
  59. Mulle C., Benoit P., Pinset C., Roa M., Changeux J. P. Calcitonin gene-related peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse muscle cells. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5728–5732. doi: 10.1073/pnas.85.15.5728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Murre C., McCaw P. S., Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989 Mar 10;56(5):777–783. doi: 10.1016/0092-8674(89)90682-x. [DOI] [PubMed] [Google Scholar]
  61. Nabeshima Y., Fujii-Kuriyama Y., Muramatsu M., Ogata K. Alternative transcription and two modes of splicing results in two myosin light chains from one gene. Nature. 1984 Mar 22;308(5957):333–338. doi: 10.1038/308333a0. [DOI] [PubMed] [Google Scholar]
  62. Naidu P. S., Ludolph D. C., To R. Q., Hinterberger T. J., Konieczny S. F. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Mol Cell Biol. 1995 May;15(5):2707–2718. doi: 10.1128/mcb.15.5.2707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Niederreither K., D'Souza R. N., de Crombrugghe B. Minimal DNA sequences that control the cell lineage-specific expression of the pro alpha 2(I) collagen promoter in transgenic mice. J Cell Biol. 1992 Dec;119(5):1361–1370. doi: 10.1083/jcb.119.5.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Nikovits W., Jr, Mar J. H., Ordahl C. P. Muscle-specific activity of the skeletal troponin I promoter requires interaction between upstream regulatory sequences and elements contained within the first transcribed exon. Mol Cell Biol. 1990 Jul;10(7):3468–3482. doi: 10.1128/mcb.10.7.3468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Olson E. N., Perry M., Schulz R. A. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev Biol. 1995 Nov;172(1):2–14. doi: 10.1006/dbio.1995.0002. [DOI] [PubMed] [Google Scholar]
  66. Ontell M. P., Sopper M. M., Lyons G., Buckingham M., Ontell M. Modulation of contractile protein gene expression in fetal murine crural muscles: emergence of muscle diversity. Dev Dyn. 1993 Nov;198(3):203–213. doi: 10.1002/aja.1001980306. [DOI] [PubMed] [Google Scholar]
  67. Pajak L., Mariappan M., Wieczorek D. F. Reprogramming of myosin light chain 1/3 expression in muscle heterokaryons. Dev Biol. 1991 May;145(1):28–39. doi: 10.1016/0012-1606(91)90210-t. [DOI] [PubMed] [Google Scholar]
  68. Pankratz M. J., Jäckle H. Making stripes in the Drosophila embryo. Trends Genet. 1990 Sep;6(9):287–292. doi: 10.1016/0168-9525(90)90234-w. [DOI] [PubMed] [Google Scholar]
  69. Pellerin I., Schnabel C., Catron K. M., Abate C. Hox proteins have different affinities for a consensus DNA site that correlate with the positions of their genes on the hox cluster. Mol Cell Biol. 1994 Jul;14(7):4532–4545. doi: 10.1128/mcb.14.7.4532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Periasamy M., Strehler E. E., Garfinkel L. I., Gubits R. M., Ruiz-Opazo N., Nadal-Ginard B. Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J Biol Chem. 1984 Nov 10;259(21):13595–13604. [PubMed] [Google Scholar]
  71. Petropoulos C. J., Rosenberg M. P., Jenkins N. A., Copeland N. G., Hughes S. H. The chicken skeletal muscle alpha-actin promoter is tissue specific in transgenic mice. Mol Cell Biol. 1989 Sep;9(9):3785–3792. doi: 10.1128/mcb.9.9.3785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Pette D., Schnez U. Myosin light chain patterns of individual fast and slow-twitch fibres of rabbit muscles. Histochemistry. 1977 Oct 22;54(2):97–107. doi: 10.1007/BF00489668. [DOI] [PubMed] [Google Scholar]
  73. Robert B., Daubas P., Akimenko M. A., Cohen A., Garner I., Guenet J. L., Buckingham M. A single locus in the mouse encodes both myosin light chains 1 and 3, a second locus corresponds to a related pseudogene. Cell. 1984 Nov;39(1):129–140. doi: 10.1016/0092-8674(84)90198-3. [DOI] [PubMed] [Google Scholar]
  74. Rosenthal N., Berglund E. B., Wentworth B. M., Donoghue M., Winter B., Bober E., Braun T., Arnold H. H. A highly conserved enhancer downstream of the human MLC1/3 locus is a target for multiple myogenic determination factors. Nucleic Acids Res. 1990 Nov 11;18(21):6239–6246. doi: 10.1093/nar/18.21.6239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Rosenthal N., Kornhauser J. M., Donoghue M., Rosen K. M., Merlie J. P. Myosin light chain enhancer activates muscle-specific, developmentally regulated gene expression in transgenic mice. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7780–7784. doi: 10.1073/pnas.86.20.7780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Rudnicki M. A., Braun T., Hinuma S., Jaenisch R. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell. 1992 Oct 30;71(3):383–390. doi: 10.1016/0092-8674(92)90508-a. [DOI] [PubMed] [Google Scholar]
  77. Salminen M., Maire P., Concordet J. P., Moch C., Porteu A., Kahn A., Daegelen D. Fast-muscle-specific expression of human aldolase A transgenes. Mol Cell Biol. 1994 Oct;14(10):6797–6808. doi: 10.1128/mcb.14.10.6797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Sanes J. R., Donoghue M. J., Wallace M. C., Merlie J. P. Rostrocaudal differences among muscles revealed by a transgene: graded expression at low copy number. Cold Spring Harb Symp Quant Biol. 1992;57:451–460. doi: 10.1101/sqb.1992.057.01.050. [DOI] [PubMed] [Google Scholar]
  79. Sanes J. R., Johnson Y. R., Kotzbauer P. T., Mudd J., Hanley T., Martinou J. C., Merlie J. P. Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers. Development. 1991 Dec;113(4):1181–1191. doi: 10.1242/dev.113.4.1181. [DOI] [PubMed] [Google Scholar]
  80. Sanes J. R., Rubenstein J. L., Nicolas J. F. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 1986 Dec 1;5(12):3133–3142. doi: 10.1002/j.1460-2075.1986.tb04620.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Schoenherr C. J., Anderson D. J. Silencing is golden: negative regulation in the control of neuronal gene transcription. Curr Opin Neurobiol. 1995 Oct;5(5):566–571. doi: 10.1016/0959-4388(95)80060-3. [DOI] [PubMed] [Google Scholar]
  82. Seidel U., Arnold H. H. Identification of the functional promoter regions in the human gene encoding the myosin alkali light chains MLC1 and MLC3 of fast skeletal muscle. J Biol Chem. 1989 Sep 25;264(27):16109–16117. [PubMed] [Google Scholar]
  83. Shani M. Tissue-specific expression of rat myosin light-chain 2 gene in transgenic mice. Nature. 1985 Mar 21;314(6008):283–286. doi: 10.1038/314283a0. [DOI] [PubMed] [Google Scholar]
  84. Staron R. S., Pette D. The multiplicity of combinations of myosin light chains and heavy chains in histochemically typed single fibres. Rabbit tibialis anterior muscle. Biochem J. 1987 May 1;243(3):695–699. doi: 10.1042/bj2430695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Stockdale F. E. Myogenic cell lineages. Dev Biol. 1992 Dec;154(2):284–298. doi: 10.1016/0012-1606(92)90068-r. [DOI] [PubMed] [Google Scholar]
  86. Wentworth B. M., Donoghue M., Engert J. C., Berglund E. B., Rosenthal N. Paired MyoD-binding sites regulate myosin light chain gene expression. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1242–1246. doi: 10.1073/pnas.88.4.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Wigston D. J., Sanes J. R. Selective reinnervation of adult mammalian muscle by axons from different segmental levels. Nature. 1982 Sep 30;299(5882):464–467. doi: 10.1038/299464a0. [DOI] [PubMed] [Google Scholar]
  88. Wigston D. J., Sanes J. R. Selective reinnervation of intercostal muscles transplanted from different segmental levels to a common site. J Neurosci. 1985 May;5(5):1208–1221. doi: 10.1523/JNEUROSCI.05-05-01208.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Yu L., LaPolla R. J., Davidson N. Mouse muscle nicotinic acetylcholine receptor gamma subunit: cDNA sequence and gene expression. Nucleic Acids Res. 1986 Apr 25;14(8):3539–3555. doi: 10.1093/nar/14.8.3539. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES