Abstract
Expression of the gene encoding medium-chain acyl coenzyme A dehydrogenase (MCAD), a nuclearly encoded mitochondrial fatty acid beta-oxidation enzyme, is regulated in parallel with fatty acid oxidation rates among tissues and during development. We have shown previously that the human MCAD gene promoter contains a pleiotropic element (nuclear receptor response element [NRRE-1]) that confers transcriptional activation or repression by members of the nuclear receptor superfamily. Mice transgenic for human MCAD gene promoter fragments fused to a chloramphenicol acetyltransferase gene reporter were produced and characterized to evaluate the role of NRRE-1 and other promoter elements in the transcriptional control of the MCAD gene in vivo. Expression of the full-length MCAD promoter-chloramphenicol acetyltransferase transgene (MCADCAT.371) paralleled the known tissue-specific differences in mitochondrial beta-oxidation rates and MCAD expression. MCADCAT.371 transcripts were abundant in heart tissue and brown adipose tissue, tissues with high-level MCAD expression. During perinatal cardiac developmental stages, expression of the MCADCAT.371 transgene paralleled mouse MCAD mRNA levels. In contrast, expression of a mutant MCADCAT transgene, which lacked NRRE-1 (MCADCATdeltaNRRE-1), was not enriched in heart or brown adipose tissue and did not exhibit appropriate postnatal induction in the developing heart. Transient-transfection studies with MCAD promoter-luciferase constructs containing normal or mutant NRRE-1 sequences demonstrated that the nuclear receptor binding sequences within NRRE-1 are necessary for high-level transcriptional activity in primary rat cardiocytes. Electrophoretic mobility shift assays demonstrated that NRRE-1 was bound by several cardiac and brown adipose nuclear proteins and that these interactions required the NRRE-1 receptor binding hexamer sequences. Antibody supershift studies identified the orphan nuclear receptor COUP-TF as one of the endogenous cardiac proteins which bound NRRE-1. These results dictate an important role for nuclear receptors in the transcriptional control of a nuclear gene encoding a mitochondrial fatty acid oxidation enzyme and identify a gene regulatory pathway involved in cardiac energy metabolism.
Full Text
The Full Text of this article is available as a PDF (546.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez R., de Andrés J., Yubero P., Viñas O., Mampel T., Iglesias R., Giralt M., Villarroya F. A novel regulatory pathway of brown fat thermogenesis. Retinoic acid is a transcriptional activator of the mitochondrial uncoupling protein gene. J Biol Chem. 1995 Mar 10;270(10):5666–5673. doi: 10.1074/jbc.270.10.5666. [DOI] [PubMed] [Google Scholar]
- Augenfeld J., Fritz I. B. Carnitine palmitolyltransferase activity and fatty acid oxidation by livers from fetal and neonatal rats. Can J Biochem. 1970 Mar;48(3):288–294. doi: 10.1139/o70-050. [DOI] [PubMed] [Google Scholar]
- Breuer E., Barta E., Zlatos L., Pappová E. Developmental changes of myocardial metabolism. II. Myocardial metabolism of fatty acids in the early postnatal period in dogs. Biol Neonat. 1968;12(1):54–64. [PubMed] [Google Scholar]
- Carroll J. E., McGuire B. S., Chancey V. F., Harrison K. B. Acyl-CoA dehydrogenase enzymes during early postnatal development in the rat. Biol Neonate. 1989;55(3):185–190. doi: 10.1159/000242915. [DOI] [PubMed] [Google Scholar]
- Carter M. E., Gulick T., Moore D. D., Kelly D. P. A pleiotropic element in the medium-chain acyl coenzyme A dehydrogenase gene promoter mediates transcriptional regulation by multiple nuclear receptor transcription factors and defines novel receptor-DNA binding motifs. Mol Cell Biol. 1994 Jul;14(7):4360–4372. doi: 10.1128/mcb.14.7.4360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter M. E., Gulick T., Raisher B. D., Caira T., Ladias J. A., Moore D. D., Kelly D. P. Hepatocyte nuclear factor-4 activates medium chain acyl-CoA dehydrogenase gene transcription by interacting with a complex regulatory element. J Biol Chem. 1993 Jul 5;268(19):13805–13810. [PubMed] [Google Scholar]
- Cassard-Doulcier A. M., Larose M., Matamala J. C., Champigny O., Bouillaud F., Ricquier D. In vitro interactions between nuclear proteins and uncoupling protein gene promoter reveal several putative transactivating factors including Ets1, retinoid X receptor, thyroid hormone receptor, and a CACCC box-binding protein. J Biol Chem. 1994 Sep 30;269(39):24335–24342. [PubMed] [Google Scholar]
- Duran M., Hofkamp M., Rhead W. J., Saudubray J. M., Wadman S. K. Sudden child death and 'healthy' affected family members with medium-chain acyl-coenzyme A dehydrogenase deficiency. Pediatrics. 1986 Dec;78(6):1052–1057. [PubMed] [Google Scholar]
- Friedman J. M. Obesity. Brown fat and yellow mice. Nature. 1993 Dec 23;366(6457):720–721. doi: 10.1038/366720a0. [DOI] [PubMed] [Google Scholar]
- Gulick T., Cresci S., Caira T., Moore D. D., Kelly D. P. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11012–11016. doi: 10.1073/pnas.91.23.11012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hainline B. E., Kahlenbeck D. J., Grant J., Strauss A. W. Tissue specific and developmental expression of rat long-and medium-chain acyl-CoA dehydrogenases. Biochim Biophys Acta. 1993 Dec 14;1216(3):460–468. doi: 10.1016/0167-4781(93)90015-6. [DOI] [PubMed] [Google Scholar]
- Hallman M. Changes in mitochondrial respiratory chain proteins during perinatal development. Evidence of the importance of environmental oxygen tension. Biochim Biophys Acta. 1971 Dec 7;253(2):360–372. doi: 10.1016/0005-2728(71)90040-5. [DOI] [PubMed] [Google Scholar]
- Ip H. S., Wilson D. B., Heikinheimo M., Tang Z., Ting C. N., Simon M. C., Leiden J. M., Parmacek M. S. The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells. Mol Cell Biol. 1994 Nov;14(11):7517–7526. doi: 10.1128/mcb.14.11.7517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kastner P., Grondona J. M., Mark M., Gansmuller A., LeMeur M., Decimo D., Vonesch J. L., Dollé P., Chambon P. Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell. 1994 Sep 23;78(6):987–1003. doi: 10.1016/0092-8674(94)90274-7. [DOI] [PubMed] [Google Scholar]
- Kelly D. P., Gordon J. I., Alpers R., Strauss A. W. The tissue-specific expression and developmental regulation of two nuclear genes encoding rat mitochondrial proteins. Medium chain acyl-CoA dehydrogenase and mitochondrial malate dehydrogenase. J Biol Chem. 1989 Nov 15;264(32):18921–18925. [PubMed] [Google Scholar]
- Klaus S., Choy L., Champigny O., Cassard-Doulcier A. M., Ross S., Spiegelman B., Ricquier D. Characterization of the novel brown adipocyte cell line HIB 1B. Adrenergic pathways involved in regulation of uncoupling protein gene expression. J Cell Sci. 1994 Jan;107(Pt 1):313–319. doi: 10.1242/jcs.107.1.313. [DOI] [PubMed] [Google Scholar]
- Krey G., Mahfoudi A., Wahli W. Functional interactions of peroxisome proliferator-activated receptor, retinoid-X receptor, and Sp1 in the transcriptional regulation of the acyl-coenzyme-A oxidase promoter. Mol Endocrinol. 1995 Feb;9(2):219–231. doi: 10.1210/mend.9.2.7776972. [DOI] [PubMed] [Google Scholar]
- Ladias J. A., Karathanasis S. K. Regulation of the apolipoprotein AI gene by ARP-1, a novel member of the steroid receptor superfamily. Science. 1991 Feb 1;251(4993):561–565. doi: 10.1126/science.1899293. [DOI] [PubMed] [Google Scholar]
- Leone T. C., Cresci S., Carter M. E., Zhang Z., Lala D. S., Strauss A. W., Kelly D. P. The human medium chain Acyl-CoA dehydrogenase gene promoter consists of a complex arrangement of nuclear receptor response elements and Sp1 binding sites. J Biol Chem. 1995 Jul 7;270(27):16308–16314. doi: 10.1074/jbc.270.27.16308. [DOI] [PubMed] [Google Scholar]
- Lockwood E. A., Bailey E. Fatty acid utilization during development of the rat. Biochem J. 1970 Nov;120(1):49–54. doi: 10.1042/bj1200049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowell B. B., S-Susulic V., Hamann A., Lawitts J. A., Himms-Hagen J., Boyer B. B., Kozak L. P., Flier J. S. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature. 1993 Dec 23;366(6457):740–742. doi: 10.1038/366740a0. [DOI] [PubMed] [Google Scholar]
- Molkentin J. D., Markham B. E. An M-CAT binding factor and an RSRF-related A-rich binding factor positively regulate expression of the alpha-cardiac myosin heavy-chain gene in vivo. Mol Cell Biol. 1994 Aug;14(8):5056–5065. doi: 10.1128/mcb.14.8.5056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagao M., Parimoo B., Tanaka K. Developmental, nutritional, and hormonal regulation of tissue-specific expression of the genes encoding various acyl-CoA dehydrogenases and alpha-subunit of electron transfer flavoprotein in rat. J Biol Chem. 1993 Nov 15;268(32):24114–24124. [PubMed] [Google Scholar]
- Raisher B. D., Gulick T., Zhang Z., Strauss A. W., Moore D. D., Kelly D. P. Identification of a novel retinoid-responsive element in the promoter region of the medium chain acyl-coenzyme A dehydrogenase gene. J Biol Chem. 1992 Oct 5;267(28):20264–20269. [PubMed] [Google Scholar]
- Revzin A. Gel electrophoresis assays for DNA-protein interactions. Biotechniques. 1989 Apr;7(4):346–355. [PubMed] [Google Scholar]
- Schulz H. Beta oxidation of fatty acids. Biochim Biophys Acta. 1991 Jan 28;1081(2):109–120. doi: 10.1016/0005-2760(91)90015-a. [DOI] [PubMed] [Google Scholar]
- Sucov H. M., Dyson E., Gumeringer C. L., Price J., Chien K. R., Evans R. M. RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev. 1994 May 1;8(9):1007–1018. doi: 10.1101/gad.8.9.1007. [DOI] [PubMed] [Google Scholar]
- Tolwani R. J., Farmer S. C., Wood P. A. Molecular cloning and characterization of the mouse medium-chain acyl-CoA dehydrogenase cDNA. Genomics. 1994 Sep 1;23(1):247–249. doi: 10.1006/geno.1994.1486. [DOI] [PubMed] [Google Scholar]
- Tontonoz P., Graves R. A., Budavari A. I., Erdjument-Bromage H., Lui M., Hu E., Tempst P., Spiegelman B. M. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res. 1994 Dec 25;22(25):5628–5634. doi: 10.1093/nar/22.25.5628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang L. H., Tsai S. Y., Cook R. G., Beattie W. G., Tsai M. J., O'Malley B. W. COUP transcription factor is a member of the steroid receptor superfamily. Nature. 1989 Jul 13;340(6229):163–166. doi: 10.1038/340163a0. [DOI] [PubMed] [Google Scholar]
- Warshaw J. B. Cellular energy metabolism during fetal development. IV. Fatty acid activation, acyl transfer and fatty acid oxidation during development of the chick and rat. Dev Biol. 1972 Aug;28(4):537–544. doi: 10.1016/0012-1606(72)90001-2. [DOI] [PubMed] [Google Scholar]
- Zhang Z. F., Kelly D. P., Kim J. J., Zhou Y. Q., Ogden M. L., Whelan A. J., Strauss A. W. Structural organization and regulatory regions of the human medium-chain acyl-CoA dehydrogenase gene. Biochemistry. 1992 Jan 14;31(1):81–89. doi: 10.1021/bi00116a013. [DOI] [PubMed] [Google Scholar]
- Zhu H., Nguyen V. T., Brown A. B., Pourhosseini A., Garcia A. V., van Bilsen M., Chien K. R. A novel, tissue-restricted zinc finger protein (HF-1b) binds to the cardiac regulatory element (HF-1b/MEF-2) in the rat myosin light-chain 2 gene. Mol Cell Biol. 1993 Jul;13(7):4432–4444. doi: 10.1128/mcb.13.7.4432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zou Y., Chien K. R. EFIA/YB-1 is a component of cardiac HF-1A binding activity and positively regulates transcription of the myosin light-chain 2v gene. Mol Cell Biol. 1995 Jun;15(6):2972–2982. doi: 10.1128/mcb.15.6.2972. [DOI] [PMC free article] [PubMed] [Google Scholar]