Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Aug;16(8):4436–4444. doi: 10.1128/mcb.16.8.4436

The sensitivity of Cockayne's syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes.

M F van Oosterwijk 1, A Versteeg 1, R Filon 1, A A van Zeeland 1, L H Mullenders 1
PMCID: PMC231442  PMID: 8754844

Abstract

Two of the hallmarks of Cockayne's syndrome (CS) are the hypersensitivity of cells to UV light and the lack of recovery of the ability to synthesize RNA following exposure of cells to UV light, in spite of the normal repair capacity at the overall genome level. The prolonged repressed RNA synthesis has been attributed to a defect in transcription-coupled repair, resulting in slow removal of DNA lesions from the transcribed strand of active genes. This model predicts that the sensitivity of CS cells to another DNA-damaging agent, i.e., the UV-mimetic agent N-acetoxy-2-acetylaminofluorene (NA-AAF), should also be associated with a lack of resumption of RNA synthesis and defective transcription-coupled repair of NA-AAF-induced DNA adducts. We tested this by measuring the rate of excision of DNA adducts in the adenosine deaminase gene of primary normal human fibroblasts and two CS (complementation group A and B) fibroblast strains. High-performance liquid chromatography analysis of DNA adducts revealed that N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) was the main adduct induced by NA-AAF in both normal and CS cells. No differences were found between normal and CS cells with respect to induction of this lesion either at the level of the genome overall or at the gene level. Moreover, repair of dG-C8-AF in the active adenosine deaminase gene occurred at similar rates and without strand specificity in normal and CS cells, indicating that transcription-coupled repair does not contribute significantly to repair of dG-C8-AF in active genes. Yet CS cells are threefold more sensitive to NA-AAF than are normal cells and are unable to recover the ability to synthesize RNA. Our data rule out defective transcription-coupled repair as the cause of the increased sensitivity of CS cells to DNA-damaging agents and suggest that the cellular sensitivity and the prolonged repressed RNA synthesis are primarily due to a transcription defect. We hypothesize that upon treatment of cells with either UV or NA-AAF, the basal transcription factor TFIIH becomes involved in nucleotide excision repair and that the CS gene products are involved in the conversion of TFIIH back to the transcription function. In this view, the CS proteins act as repair-transcription uncoupling factors. If the uncoupling process is defective, RNA synthesis will stay repressed, causing cellular sensitivity. Since transcription is essential for transcription-coupled repair, the CS defect will affect those lesions whose repair is predominantly transcription coupled, i.e., UV-induced cyclobutane pyrimidine dimers.

Full Text

The Full Text of this article is available as a PDF (286.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed F. E., Setlow R. B. DNA repair in xeroderma pigmentosum cells treated with combinations of ultraviolet radiation and N-acetoxy-2-acetylaminofluorene. Cancer Res. 1979 Feb;39(2 Pt 1):471–479. [PubMed] [Google Scholar]
  2. Ahmed F. E., Setlow R. B. Different rate-limiting steps in excision repair of ultraviolet- and N-acetoxy-2-acetylaminofluorene-damaged DNA in normal human fibroblasts. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1548–1552. doi: 10.1073/pnas.74.4.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amacher D. E., Lieberman M. W. Removal of acetylaminofluorene from the DNA of control and repair-deficient human fibroblasts. Biochem Biophys Res Commun. 1977 Jan 10;74(1):285–290. doi: 10.1016/0006-291x(77)91406-1. [DOI] [PubMed] [Google Scholar]
  4. Bohr V. A., Smith C. A., Okumoto D. S., Hanawalt P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985 Feb;40(2):359–369. doi: 10.1016/0092-8674(85)90150-3. [DOI] [PubMed] [Google Scholar]
  5. Bootsma D., Hoeijmakers J. H. DNA repair. Engagement with transcription. Nature. 1993 May 13;363(6425):114–115. doi: 10.1038/363114a0. [DOI] [PubMed] [Google Scholar]
  6. Broughton B. C., Thompson A. F., Harcourt S. A., Vermeulen W., Hoeijmakers J. H., Botta E., Stefanini M., King M. D., Weber C. A., Cole J. Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome. Am J Hum Genet. 1995 Jan;56(1):167–174. [PMC free article] [PubMed] [Google Scholar]
  7. Brown A. J., Fickel T. H., Cleaver J. E., Lohman P. H., Wade M. H., Waters R. Overlapping pathways for repair of damage from ultraviolet light and chemical carcinogens in human fibroblasts. Cancer Res. 1979 Jul;39(7 Pt 1):2522–2527. [PubMed] [Google Scholar]
  8. Chen R. H., Maher V. M., Brouwer J., van de Putte P., McCormick J. J. Preferential repair and strand-specific repair of benzo[a]pyrene diol epoxide adducts in the HPRT gene of diploid human fibroblasts. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5413–5417. doi: 10.1073/pnas.89.12.5413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Christians F. C., Hanawalt P. C. Repair in ribosomal RNA genes is deficient in xeroderma pigmentosum group C and in Cockayne's syndrome cells. Mutat Res. 1994 Apr;323(4):179–187. doi: 10.1016/0165-7992(94)90031-0. [DOI] [PubMed] [Google Scholar]
  10. Donahue B. A., Fuchs R. P., Reines D., Hanawalt P. C. Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. J Biol Chem. 1996 May 3;271(18):10588–10594. doi: 10.1074/jbc.271.18.10588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evans F. E., Miller D. W., Beland F. A. Sensitivity of the conformation of deoxyguanosine to binding at the C-8 position by N-acetylated and unacetylated 2-aminofluorene. Carcinogenesis. 1980;1(11):955–959. doi: 10.1093/carcin/1.11.955. [DOI] [PubMed] [Google Scholar]
  12. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  13. Fischer E., Keijzer W., Thielmann H. W., Popanda O., Bohnert E., Edler L., Jung E. G., Bootsma D. A ninth complementation group in xeroderma pigmentosum, XP I. Mutat Res. 1985 May;145(3):217–225. doi: 10.1016/0167-8817(85)90030-6. [DOI] [PubMed] [Google Scholar]
  14. Francis A. A., Snyder R. D., Dunn W. C., Regan J. D. Classification of chemical agents as to their ability to induce long- or short-patch DNA repair in human cells. Mutat Res. 1981 Sep;83(2):159–169. doi: 10.1016/0027-5107(81)90001-4. [DOI] [PubMed] [Google Scholar]
  15. Fuchs R. P., Daune M. P. Dynamic structure of DNA modified with the carcinogen N-acetoxy-n-2-acetylaminofluorene. Biochemistry. 1974 Oct 8;13(21):4435–4440. doi: 10.1021/bi00718a028. [DOI] [PubMed] [Google Scholar]
  16. Fuchs R. P., Lefevre J. F., Pouyet J., Daune M. P. Comparative orientation of the fluorene residue in native DNA modified by N-acetoxy-N-2-acetylaminofluorene and two 7-halogeno derivatives. Biochemistry. 1976 Jul 27;15(15):3347–3351. doi: 10.1021/bi00660a027. [DOI] [PubMed] [Google Scholar]
  17. Heflich R. H., Neft R. E. Genetic toxicity of 2-acetylaminofluorene, 2-aminofluorene and some of their metabolites and model metabolites. Mutat Res. 1994 Oct;318(2):73–114. doi: 10.1016/0165-1110(94)90025-6. [DOI] [PubMed] [Google Scholar]
  18. Henning K. A., Li L., Iyer N., McDaniel L. D., Reagan M. S., Legerski R., Schultz R. A., Stefanini M., Lehmann A. R., Mayne L. V. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell. 1995 Aug 25;82(4):555–564. doi: 10.1016/0092-8674(95)90028-4. [DOI] [PubMed] [Google Scholar]
  19. Hofker M. H., van Ommen G. J., Bakker E., Burmeister M., Pearson P. L. Development of additional RFLP probes near the locus for Duchenne muscular dystrophy by cosmid cloning of the DXS84 (754) locus. Hum Genet. 1986 Nov;74(3):270–274. doi: 10.1007/BF00282547. [DOI] [PubMed] [Google Scholar]
  20. Kantor G. J., Barsalou L. S., Hanawalt P. C. Selective repair of specific chromatin domains in UV-irradiated cells from xeroderma pigmentosum complementation group C. Mutat Res. 1990 May;235(3):171–180. doi: 10.1016/0921-8777(90)90071-c. [DOI] [PubMed] [Google Scholar]
  21. Lattier D. L., States J. C., Hutton J. J., Wiginton D. A. Cell type-specific transcriptional regulation of the human adenosine deaminase gene. Nucleic Acids Res. 1989 Feb 11;17(3):1061–1076. doi: 10.1093/nar/17.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leadon S. A., Cooper P. K. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10499–10503. doi: 10.1073/pnas.90.22.10499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Leadon S. A., Snowden M. M. Differential repair of DNA damage in the human metallothionein gene family. Mol Cell Biol. 1988 Dec;8(12):5331–5338. doi: 10.1128/mcb.8.12.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leng M., Ptak M., Rio P. Conformation of acetylaminofluorene and aminofluorene modified guanosine and guanosine derivatives. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1095–1102. doi: 10.1016/0006-291x(80)90064-9. [DOI] [PubMed] [Google Scholar]
  25. Mayne L. V., Lehmann A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 1982 Apr;42(4):1473–1478. [PubMed] [Google Scholar]
  26. McGregor W. G., Mah M. C., Chen R. W., Maher V. M., McCormick J. J. Lack of correlation between degree of interference with transcription and rate of strand specific repair in the HPRT gene of diploid human fibroblasts. J Biol Chem. 1995 Nov 10;270(45):27222–27227. doi: 10.1074/jbc.270.45.27222. [DOI] [PubMed] [Google Scholar]
  27. Mellon I., Bohr V. A., Smith C. A., Hanawalt P. C. Preferential DNA repair of an active gene in human cells. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8878–8882. doi: 10.1073/pnas.83.23.8878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mellon I., Spivak G., Hanawalt P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell. 1987 Oct 23;51(2):241–249. doi: 10.1016/0092-8674(87)90151-6. [DOI] [PubMed] [Google Scholar]
  29. Nairn R. S., Tang M. S., Wang R. M., Adair G. M., Humphrey R. M. Processing of 2-aminofluorene and 2-acetylaminofluorene DNA adducts in Chinese hamster ovary cells. Carcinogenesis. 1988 Aug;9(8):1369–1375. doi: 10.1093/carcin/9.8.1369. [DOI] [PubMed] [Google Scholar]
  30. Regan J. D., Setlow R. B. Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res. 1974 Dec;34(12):3318–3325. [PubMed] [Google Scholar]
  31. Ruven H. J., Seelen C. M., Lohman P. H., Mullenders L. H., van Zeeland A. A. Efficient synthesis of 32P-labeled single-stranded DNA probes using linear PCR; application of the method for analysis of strand-specific DNA repair. Mutat Res. 1994 Sep;315(2):189–195. doi: 10.1016/0921-8777(94)90018-3. [DOI] [PubMed] [Google Scholar]
  32. Selby C. P., Sancar A. Molecular mechanism of transcription-repair coupling. Science. 1993 Apr 2;260(5104):53–58. doi: 10.1126/science.8465200. [DOI] [PubMed] [Google Scholar]
  33. Svejstrup J. Q., Wang Z., Feaver W. J., Wu X., Bushnell D. A., Donahue T. F., Friedberg E. C., Kornberg R. D. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell. 1995 Jan 13;80(1):21–28. doi: 10.1016/0092-8674(95)90447-6. [DOI] [PubMed] [Google Scholar]
  34. Tang M. S., Bohr V. A., Zhang X. S., Pierce J., Hanawalt P. C. Quantification of aminofluorene adduct formation and repair in defined DNA sequences in mammalian cells using the UVRABC nuclease. J Biol Chem. 1989 Aug 25;264(24):14455–14462. [PubMed] [Google Scholar]
  35. Tang M., Lieberman M. W. Quantification of adducts formed in DNA treated with N-acetoxy-2-acetylaminofluorene or N-hydroxy-2-aminofluorene: comparison of trifluoroacetic acid and enzymatic degradation. Carcinogenesis. 1983 Aug;4(8):1001–1006. doi: 10.1093/carcin/4.8.1001. [DOI] [PubMed] [Google Scholar]
  36. Troelstra C., van Gool A., de Wit J., Vermeulen W., Bootsma D., Hoeijmakers J. H. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell. 1992 Dec 11;71(6):939–953. doi: 10.1016/0092-8674(92)90390-x. [DOI] [PubMed] [Google Scholar]
  37. Venema J., Bartosová Z., Natarajan A. T., van Zeeland A. A., Mullenders L. H. Transcription affects the rate but not the extent of repair of cyclobutane pyrimidine dimers in the human adenosine deaminase gene. J Biol Chem. 1992 May 5;267(13):8852–8856. [PubMed] [Google Scholar]
  38. Venema J., Mullenders L. H., Natarajan A. T., van Zeeland A. A., Mayne L. V. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4707–4711. doi: 10.1073/pnas.87.12.4707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Venema J., van Hoffen A., Karcagi V., Natarajan A. T., van Zeeland A. A., Mullenders L. H. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol Cell Biol. 1991 Aug;11(8):4128–4134. doi: 10.1128/mcb.11.8.4128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Venema J., van Hoffen A., Natarajan A. T., van Zeeland A. A., Mullenders L. H. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Res. 1990 Feb 11;18(3):443–448. doi: 10.1093/nar/18.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vermeulen W., Osseweijer P., de Jonge A. J., Hoeijmakers J. H. Transient correction of excision repair defects in fibroblasts of 9 xeroderma pigmentosum complementation groups by microinjection of crude human cell extracts. Mutat Res. 1986 May;165(3):199–206. doi: 10.1016/0167-8817(86)90055-6. [DOI] [PubMed] [Google Scholar]
  42. Wade M. H., Chu E. H. Effects of DNA damaging agents on cultured fibroblasts derived from patients with Cockayne syndrome. Mutat Res. 1979 Jan;59(1):49–60. doi: 10.1016/0027-5107(79)90194-5. [DOI] [PubMed] [Google Scholar]
  43. van Hoffen A., Natarajan A. T., Mayne L. V., van Zeeland A. A., Mullenders L. H., Venema J. Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells. Nucleic Acids Res. 1993 Dec 25;21(25):5890–5895. doi: 10.1093/nar/21.25.5890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van Hoffen A., Venema J., Meschini R., van Zeeland A. A., Mullenders L. H. Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. EMBO J. 1995 Jan 16;14(2):360–367. doi: 10.1002/j.1460-2075.1995.tb07010.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. van Zeeland A. A., Bussmann C. J., Degrassi F., Filon A. R., van Kesteren-van Leeuwen A. C., Palitti F., Natarajan A. T. Effects of aphidicolin on repair replication and induced chromosomal aberrations in mammalian cells. Mutat Res. 1982 Feb 22;92(1-2):379–392. doi: 10.1016/0027-5107(82)90237-8. [DOI] [PubMed] [Google Scholar]
  46. van de Poll M. L., van der Hulst D. A., Tates A. D., Mulder G. J., Meerman J. H. The role of specific DNA adducts in the induction of micronuclei by N-hydroxy-2-acetylaminofluorene in rat liver in vivo. Carcinogenesis. 1989 Apr;10(4):717–722. doi: 10.1093/carcin/10.4.717. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES