Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Sep;16(9):4700–4709. doi: 10.1128/mcb.16.9.4700

Yeast alpha mating factor structure-activity relationship derived from genetically selected peptide agonists and antagonists of Ste2p.

J P Manfredi 1, C Klein 1, J J Herrero 1, D R Byrd 1, J Trueheart 1, W T Wiesler 1, D M Fowlkes 1, J R Broach 1
PMCID: PMC231470  PMID: 8756627

Abstract

alpha-Factor, a 13-amino-acid pheromone secreted by haploid alpha cells of Saccharomyces cerevisiae, binds to Ste2p, a seven-transmembrane, G-protein-coupled receptor present on haploid alpha cells, to activate a signal transduction pathway required for conjugation and mating. To determine the structural requirements for alpha-factor activity, we developed a genetic screen to identify from random and semirandom libraries novel peptides that function as agonists or antagonists of Ste2p. The selection scheme was based on autocrine strains constructed to secrete random peptides and respond by growth to those that were either agonists or antagonists of Ste2p. Analysis of a number of peptides obtained by this selection procedure indicates that Trp1, Trp3, Pro8, and Gly9 are important for agonist activity specifically. His2, Leu4, Leu6, Pro10, a hydrophobic residue 12, and an aromatic residue 13 are important for both agonist and antagonist activity. Our results also show that activation of Ste2p can be achieved with novel, unanticipated combinations of amino acids. Finally, the results suggest the utility of this selection scheme for identifying novel ligands for mammalian G-protein-coupled receptors heterologously expressed in S. cerevisiae.

Full Text

The Full Text of this article is available as a PDF (887.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammerer G. Expression of genes in yeast using the ADCI promoter. Methods Enzymol. 1983;101:192–201. doi: 10.1016/0076-6879(83)01014-9. [DOI] [PubMed] [Google Scholar]
  2. Becker D. M., Guarente L. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 1991;194:182–187. doi: 10.1016/0076-6879(91)94015-5. [DOI] [PubMed] [Google Scholar]
  3. Blumer K. J., Thorner J. Beta and gamma subunits of a yeast guanine nucleotide-binding protein are not essential for membrane association of the alpha subunit but are required for receptor coupling. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4363–4367. doi: 10.1073/pnas.87.11.4363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boeke J. D., Trueheart J., Natsoulis G., Fink G. R. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. doi: 10.1016/0076-6879(87)54076-9. [DOI] [PubMed] [Google Scholar]
  5. Bourbonnais Y., Bolin D., Shields D. Secretion of somatostatin by Saccharomyces cerevisiae. Correct proteolytic processing of pro-alpha-factor-somatostatin hybrids requires the products of the KEX2 and STE13 genes. J Biol Chem. 1988 Oct 25;263(30):15342–15347. [PubMed] [Google Scholar]
  6. Brake A. J., Merryweather J. P., Coit D. G., Heberlein U. A., Masiarz F. R., Mullenbach G. T., Urdea M. S., Valenzuela P., Barr P. J. Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4642–4646. doi: 10.1073/pnas.81.15.4642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brenner C., Fuller R. S. Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):922–926. doi: 10.1073/pnas.89.3.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Christianson T. W., Sikorski R. S., Dante M., Shero J. H., Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene. 1992 Jan 2;110(1):119–122. doi: 10.1016/0378-1119(92)90454-w. [DOI] [PubMed] [Google Scholar]
  9. Ciejek E., Thorner J. Recovery of S. cerevisiae a cells from G1 arrest by alpha factor pheromone requires endopeptidase action. Cell. 1979 Nov;18(3):623–635. doi: 10.1016/0092-8674(79)90117-x. [DOI] [PubMed] [Google Scholar]
  10. Eriotou-Bargiota E., Xue C. B., Naider F., Becker J. M. Antagonistic and synergistic peptide analogues of the tridecapeptide mating pheromone of Saccharomyces cerevisiae. Biochemistry. 1992 Jan 21;31(2):551–557. doi: 10.1021/bi00117a036. [DOI] [PubMed] [Google Scholar]
  11. Garbow J. R., Breslav M., Antohi O., Naider F. Conformational analysis of the Saccharomyces cerevisiae tridecapeptide mating pheromone by 13C,15N rotational-echo double resonance nuclear magnetic resonance spectroscopy. Biochemistry. 1994 Aug 23;33(33):10094–10099. doi: 10.1021/bi00199a037. [DOI] [PubMed] [Google Scholar]
  12. Gounarides J. S., Broido M. S., Becker J. M., Naider F. R. Conformational analysis of [D-Ala9]alpha-factor and [L-Ala9]alpha-factor in solution and in the presence of lipid. Biochemistry. 1993 Jan 26;32(3):908–917. doi: 10.1021/bi00054a023. [DOI] [PubMed] [Google Scholar]
  13. Jelicks L. A., Broido M. S., Becker J. M., Naider F. R. Interaction of the Saccharomyces cerevisiae alpha-factor with phospholipid vesicles as revealed by proton and phosphorus NMR. Biochemistry. 1989 May 16;28(10):4233–4240. doi: 10.1021/bi00436a017. [DOI] [PubMed] [Google Scholar]
  14. Jelicks L. A., Naider F. R., Shenbagamurthi P., Becker J. M., Broido M. S. A type II beta-turn in a flexible peptide: proton assignment and conformational analysis of the alpha-factor from Saccharomyces cerevisiae in solution. Biopolymers. 1988 Mar;27(3):431–449. doi: 10.1002/bip.360270307. [DOI] [PubMed] [Google Scholar]
  15. King K., Dohlman H. G., Thorner J., Caron M. G., Lefkowitz R. J. Control of yeast mating signal transduction by a mammalian beta 2-adrenergic receptor and Gs alpha subunit. Science. 1990 Oct 5;250(4977):121–123. doi: 10.1126/science.2171146. [DOI] [PubMed] [Google Scholar]
  16. Klopotowski T., Wiater A. Synergism of aminotriazole and phosphate on the inhibition of yeast imidazole glycerol phosphate dehydratase. Arch Biochem Biophys. 1965 Dec;112(3):562–566. doi: 10.1016/0003-9861(65)90096-2. [DOI] [PubMed] [Google Scholar]
  17. Kron S. J., Gow N. A. Budding yeast morphogenesis: signalling, cytoskeleton and cell cycle. Curr Opin Cell Biol. 1995 Dec;7(6):845–855. doi: 10.1016/0955-0674(95)80069-7. [DOI] [PubMed] [Google Scholar]
  18. Levin Y., Khare R. K., Abel G., Hill D., Eriotou-Bargiota E., Becker J. M., Naider F. Histidine2 of the alpha-factor of Saccharomyces cerevisiae is not essential for binding to its receptor or for biological activity. Biochemistry. 1993 Aug 17;32(32):8199–8206. doi: 10.1021/bi00083a021. [DOI] [PubMed] [Google Scholar]
  19. Masui Y., Tanaka T., Chino N., Kita H., Sakakibara S. Amino acid substitution of mating factor of Saccharomyces cerevisiae structure-activity relationship. Biochem Biophys Res Commun. 1979 Feb 28;86(4):982–987. doi: 10.1016/0006-291x(79)90214-6. [DOI] [PubMed] [Google Scholar]
  20. Naider F., Gounarides J., Xue C. B., Bargiota E., Becker J. M. Studies on the yeast alpha-mating factor: a model for mammalian peptide hormones. Biopolymers. 1992 Apr;32(4):335–339. doi: 10.1002/bip.360320407. [DOI] [PubMed] [Google Scholar]
  21. Price L. A., Kajkowski E. M., Hadcock J. R., Ozenberger B. A., Pausch M. H. Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway. Mol Cell Biol. 1995 Nov;15(11):6188–6195. doi: 10.1128/mcb.15.11.6188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raths S. K., Naider F., Becker J. M. Peptide analogues compete with the binding of alpha-factor to its receptor in Saccharomyces cerevisiae. J Biol Chem. 1988 Nov 25;263(33):17333–17341. [PubMed] [Google Scholar]
  23. Samokhin G. P., Lizlova L. V., Bespalova J. D., Titov M. I., Smirnov V. N. The effect of alpha-factor on the rate of cell-cycle initiation in Saccharomyces cerevisiae: alpha-factor modulates transition probability in yeast. Exp Cell Res. 1981 Feb;131(2):267–275. doi: 10.1016/0014-4827(81)90231-7. [DOI] [PubMed] [Google Scholar]
  24. Sapperstein S., Berkower C., Michaelis S. Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxyl methyltransferase, and demonstration of its essential role in a-factor export. Mol Cell Biol. 1994 Feb;14(2):1438–1449. doi: 10.1128/mcb.14.2.1438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  26. Stevenson B. J., Rhodes N., Errede B., Sprague G. F., Jr Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev. 1992 Jul;6(7):1293–1304. doi: 10.1101/gad.6.7.1293. [DOI] [PubMed] [Google Scholar]
  27. Struhl K., Davis R. W. Production of a functional eukaryotic enzyme in Escherichia coli: cloning and expression of the yeast structural gene for imidazole-glycerolphosphate dehydratase (his3). Proc Natl Acad Sci U S A. 1977 Dec;74(12):5255–5259. doi: 10.1073/pnas.74.12.5255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taylor W. R. The classification of amino acid conservation. J Theor Biol. 1986 Mar 21;119(2):205–218. doi: 10.1016/s0022-5193(86)80075-3. [DOI] [PubMed] [Google Scholar]
  29. Xue C. B., Eriotou-Bargiota E., Miller D., Becker J. M., Naider F. A covalently constrained congener of the Saccharomyces cerevisiae tridecapeptide mating pheromone is an agonist. J Biol Chem. 1989 Nov 15;264(32):19161–19168. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES