Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Sep;16(9):4710–4716. doi: 10.1128/mcb.16.9.4710

A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9.

J B Demoulin 1, C Uyttenhove 1, E Van Roost 1, B DeLestré 1, D Donckers 1, J Van Snick 1, J C Renauld 1
PMCID: PMC231471  PMID: 8756628

Abstract

Interleukin-9 (IL-9), a T-cell-derived cytokine, interacts with a specific receptor associated with the IL-2 receptor gamma chain. In this report, we analyze the functional domains of the human IL-9 receptor transfected into mouse lymphoid cell lines. Three different functions were examined: growth stimulation in factor-dependent pro-B Ba/F3 cells, protection against dexamethasone-induced apoptosis, and Ly-6A2 induction in BW5147 lymphoma cells. The results indicated that a single tyrosine, at position 116 in the cytoplasmic domain, was required for all three activities. In addition, we observed that human IL-9 reduced the proliferation rate of transfected BW5147 cells, an effect also dependent on the same tyrosine. This amino acid was necessary for IL-9-mediated tyrosine phosphorylation of the receptor and for STAT activation but not for IRS-2/4PS activation or for JAK1 phosphorylation, which depended on a domain closer to the plasma membrane. We also showed that JAK1 was constitutively associated with the IL-9 receptor. Activated STAT complexes induced by IL-9 were found to contain STAT1, STAT3, and STAT5 transcription factors. Moreover, sequence homologies between human IL-9 receptor tyrosine 116 and tyrosines (of other receptors activating STAT3 and STAT5 were observed. Taken together, these data indicate that a single tyrosine of the IL-9 receptor, required for activation of three different STAT proteins, is necessary for distinct activities of this cytokine, including proliferative responses.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coffer P. J., Kruijer W. EGF receptor deletions define a region specifically mediating STAT transcription factor activation. Biochem Biophys Res Commun. 1995 May 5;210(1):74–81. doi: 10.1006/bbrc.1995.1629. [DOI] [PubMed] [Google Scholar]
  2. Cohen G. B., Ren R., Baltimore D. Modular binding domains in signal transduction proteins. Cell. 1995 Jan 27;80(2):237–248. doi: 10.1016/0092-8674(95)90406-9. [DOI] [PubMed] [Google Scholar]
  3. Damen J. E., Wakao H., Miyajima A., Krosl J., Humphries R. K., Cutler R. L., Krystal G. Tyrosine 343 in the erythropoietin receptor positively regulates erythropoietin-induced cell proliferation and Stat5 activation. EMBO J. 1995 Nov 15;14(22):5557–5568. doi: 10.1002/j.1460-2075.1995.tb00243.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Smet C., Courtois S. J., Faraoni I., Lurquin C., Szikora J. P., De Backer O., Boon T. Involvement of two Ets binding sites in the transcriptional activation of the MAGE1 gene. Immunogenetics. 1995;42(4):282–290. doi: 10.1007/BF00176446. [DOI] [PubMed] [Google Scholar]
  5. Druez C., Coulie P., Uyttenhove C., Van Snick J. Functional and biochemical characterization of mouse P40/IL-9 receptors. J Immunol. 1990 Oct 15;145(8):2494–2499. [PubMed] [Google Scholar]
  6. Fujii H., Nakagawa Y., Schindler U., Kawahara A., Mori H., Gouilleux F., Groner B., Ihle J. N., Minami Y., Miyazaki T. Activation of Stat5 by interleukin 2 requires a carboxyl-terminal region of the interleukin 2 receptor beta chain but is not essential for the proliferative signal transmission. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5482–5486. doi: 10.1073/pnas.92.12.5482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greenlund A. C., Farrar M. A., Viviano B. L., Schreiber R. D. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J. 1994 Apr 1;13(7):1591–1600. doi: 10.1002/j.1460-2075.1994.tb06422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gruss H. J., Brach M. A., Drexler H. G., Bross K. J., Herrmann F. Interleukin 9 is expressed by primary and cultured Hodgkin and Reed-Sternberg cells. Cancer Res. 1992 Feb 15;52(4):1026–1031. [PubMed] [Google Scholar]
  9. Harada N., Yang G., Miyajima A., Howard M. Identification of an essential region for growth signal transduction in the cytoplasmic domain of the human interleukin-4 receptor. J Biol Chem. 1992 Nov 15;267(32):22752–22758. [PubMed] [Google Scholar]
  10. Hou J., Schindler U., Henzel W. J., Ho T. C., Brasseur M., McKnight S. L. An interleukin-4-induced transcription factor: IL-4 Stat. Science. 1994 Sep 16;265(5179):1701–1706. doi: 10.1126/science.8085155. [DOI] [PubMed] [Google Scholar]
  11. Hou J., Schindler U., Henzel W. J., Wong S. C., McKnight S. L. Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity. 1995 Apr;2(4):321–329. doi: 10.1016/1074-7613(95)90140-x. [DOI] [PubMed] [Google Scholar]
  12. Houssiau F. A., Renauld J. C., Stevens M., Lehmann F., Lethe B., Coulie P. G., Van Snick J. Human T cell lines and clones respond to IL-9. J Immunol. 1993 Apr 1;150(7):2634–2640. [PubMed] [Google Scholar]
  13. Ihle J. N., Kerr I. M. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 1995 Feb;11(2):69–74. doi: 10.1016/s0168-9525(00)89000-9. [DOI] [PubMed] [Google Scholar]
  14. Jacobson N. G., Szabo S. J., Weber-Nordt R. M., Zhong Z., Schreiber R. D., Darnell J. E., Jr, Murphy K. M. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J Exp Med. 1995 May 1;181(5):1755–1762. doi: 10.1084/jem.181.5.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Keegan A. D., Nelms K., Wang L. M., Pierce J. H., Paul W. E. Interleukin 4 receptor: signaling mechanisms. Immunol Today. 1994 Sep;15(9):423–432. doi: 10.1016/0167-5699(94)90272-0. [DOI] [PubMed] [Google Scholar]
  16. Kimura Y., Takeshita T., Kondo M., Ishii N., Nakamura M., Van Snick J., Sugamura K. Sharing of the IL-2 receptor gamma chain with the functional IL-9 receptor complex. Int Immunol. 1995 Jan;7(1):115–120. doi: 10.1093/intimm/7.1.115. [DOI] [PubMed] [Google Scholar]
  17. Kirken R. A., Rui H., Malabarba M. G., Howard O. M., Kawamura M., O'Shea J. J., Farrar W. L. Activation of JAK3, but not JAK1, is critical for IL-2-induced proliferation and STAT5 recruitment by a COOH-terminal region of the IL-2 receptor beta-chain. Cytokine. 1995 Oct;7(7):689–700. doi: 10.1006/cyto.1995.0081. [DOI] [PubMed] [Google Scholar]
  18. Lebrun J. J., Ali S., Goffin V., Ullrich A., Kelly P. A. A single phosphotyrosine residue of the prolactin receptor is responsible for activation of gene transcription. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4031–4035. doi: 10.1073/pnas.92.9.4031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lin J. X., Migone T. S., Tsang M., Friedmann M., Weatherbee J. A., Zhou L., Yamauchi A., Bloom E. T., Mietz J., John S. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity. 1995 Apr;2(4):331–339. doi: 10.1016/1074-7613(95)90141-8. [DOI] [PubMed] [Google Scholar]
  20. Merz H., Houssiau F. A., Orscheschek K., Renauld J. C., Fliedner A., Herin M., Noel H., Kadin M., Mueller-Hermelink H. K., Van Snick J. Interleukin-9 expression in human malignant lymphomas: unique association with Hodgkin's disease and large cell anaplastic lymphoma. Blood. 1991 Sep 1;78(5):1311–1317. [PubMed] [Google Scholar]
  21. Mizushima S., Nagata S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990 Sep 11;18(17):5322–5322. doi: 10.1093/nar/18.17.5322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mui A. L., Wakao H., Kinoshita T., Kitamura T., Miyajima A. Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation. EMBO J. 1996 May 15;15(10):2425–2433. [PMC free article] [PubMed] [Google Scholar]
  23. Murakami M., Narazaki M., Hibi M., Yawata H., Yasukawa K., Hamaguchi M., Taga T., Kishimoto T. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11349–11353. doi: 10.1073/pnas.88.24.11349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Palacios R., Steinmetz M. Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell. 1985 Jul;41(3):727–734. doi: 10.1016/s0092-8674(85)80053-2. [DOI] [PubMed] [Google Scholar]
  25. Renauld J. C., Druez C., Kermouni A., Houssiau F., Uyttenhove C., Van Roost E., Van Snick J. Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5690–5694. doi: 10.1073/pnas.89.12.5690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Renauld J. C., Houssiau F., Louahed J., Vink A., Van Snick J., Uyttenhove C. Interleukin-9. Adv Immunol. 1993;54:79–97. doi: 10.1016/s0065-2776(08)60533-7. [DOI] [PubMed] [Google Scholar]
  27. Renauld J. C., Kermouni A., Vink A., Louahed J., Van Snick J. Interleukin-9 and its receptor: involvement in mast cell differentiation and T cell oncogenesis. J Leukoc Biol. 1995 Mar;57(3):353–360. doi: 10.1002/jlb.57.3.353. [DOI] [PubMed] [Google Scholar]
  28. Renauld J. C., Vink A., Louahed J., Van Snick J. Interleukin-9 is a major anti-apoptotic factor for thymic lymphomas. Blood. 1995 Mar 1;85(5):1300–1305. [PubMed] [Google Scholar]
  29. Renauld J. C., van der Lugt N., Vink A., van Roon M., Godfraind C., Warnier G., Merz H., Feller A., Berns A., Van Snick J. Thymic lymphomas in interleukin 9 transgenic mice. Oncogene. 1994 May;9(5):1327–1332. [PubMed] [Google Scholar]
  30. Russell S. M., Johnston J. A., Noguchi M., Kawamura M., Bacon C. M., Friedmann M., Berg M., McVicar D. W., Witthuhn B. A., Silvennoinen O. Interaction of IL-2R beta and gamma c chains with Jak1 and Jak3: implications for XSCID and XCID. Science. 1994 Nov 11;266(5187):1042–1045. doi: 10.1126/science.7973658. [DOI] [PubMed] [Google Scholar]
  31. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stahl N., Farruggella T. J., Boulton T. G., Zhong Z., Darnell J. E., Jr, Yancopoulos G. D. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science. 1995 Mar 3;267(5202):1349–1353. doi: 10.1126/science.7871433. [DOI] [PubMed] [Google Scholar]
  33. Taniguchi T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science. 1995 Apr 14;268(5208):251–255. doi: 10.1126/science.7716517. [DOI] [PubMed] [Google Scholar]
  34. Uyttenhove C., Simpson R. J., Van Snick J. Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6934–6938. doi: 10.1073/pnas.85.18.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vink A., Renauld J. C., Warnier G., Van Snick J. Interleukin-9 stimulates in vitro growth of mouse thymic lymphomas. Eur J Immunol. 1993 May;23(5):1134–1138. doi: 10.1002/eji.1830230523. [DOI] [PubMed] [Google Scholar]
  36. Wakao H., Gouilleux F., Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 1994 May 1;13(9):2182–2191. doi: 10.1002/j.1460-2075.1994.tb06495.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yin T., Keller S. R., Quelle F. W., Witthuhn B. A., Tsang M. L., Lienhard G. E., Ihle J. N., Yang Y. C. Interleukin-9 induces tyrosine phosphorylation of insulin receptor substrate-1 via JAK tyrosine kinases. J Biol Chem. 1995 Sep 1;270(35):20497–20502. doi: 10.1074/jbc.270.35.20497. [DOI] [PubMed] [Google Scholar]
  38. Yin T., Tsang M. L., Yang Y. C. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes. J Biol Chem. 1994 Oct 28;269(43):26614–26617. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES