Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Sep;16(9):4818–4823. doi: 10.1128/mcb.16.9.4818

Agonist-specific conformational changes in the yeast alpha-factor pheromone receptor.

G Büküşoğlu 1, D D Jenness 1
PMCID: PMC231483  PMID: 8756640

Abstract

The yeast alpha-factor pheromone receptor is a member of the G-protein-coupled receptor family. Limited trypsin digestion of yeast membranes was used to investigate ligand-induced conformational changes in this receptor. The agonist, alpha-factor, accelerated cleavage in the third intracellular loop, whereas the antagonist, desTrp1,Ala3-alpha-factor, reduced the cleavage rate. Thus, the enhanced accessibility of the third intracellular loop is specific to the agonist. alpha-Factor inhibited cleavage weakly at a second site near the cytoplasmic terminus of the seventh transmembrane helix, whereas the antagonist showed a stronger inhibition of cleavage at this site and at another site in the C-terminal domain of the receptor. The alpha-factor-induced conformational changes appeared to be inherent properties of the receptor, as they were retained in G-protein-deficient mutants. Moreover, a mutant receptor (ste2-L236H) that affects the third loop and is defective for G-protein coupling retained the ability to undergo the agonist-induced conformational changes. These results are consistent with a model in which G-protein activation is limited by the availability of specific contacts between the G protein and the third intracellular loop of the receptor. The antagonist appears to promote a distinct conformational state that differs from either the unoccupied or the agonist-occupied state.

Full Text

The Full Text of this article is available as a PDF (415.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackers G. K., Hazzard J. H. Transduction of binding energy into hemoglobin cooperativity. Trends Biochem Sci. 1993 Oct;18(10):385–390. doi: 10.1016/0968-0004(93)90095-5. [DOI] [PubMed] [Google Scholar]
  2. Baldwin J. M. Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol. 1994 Apr;6(2):180–190. doi: 10.1016/0955-0674(94)90134-1. [DOI] [PubMed] [Google Scholar]
  3. Bardwell L., Cook J. G., Inouye C. J., Thorner J. Signal propagation and regulation in the mating pheromone response pathway of the yeast Saccharomyces cerevisiae. Dev Biol. 1994 Dec;166(2):363–379. doi: 10.1006/dbio.1994.1323. [DOI] [PubMed] [Google Scholar]
  4. Blinder D., Bouvier S., Jenness D. D. Constitutive mutants in the yeast pheromone response: ordered function of the gene products. Cell. 1989 Feb 10;56(3):479–486. doi: 10.1016/0092-8674(89)90250-x. [DOI] [PubMed] [Google Scholar]
  5. Blinder D., Jenness D. D. Regulation of postreceptor signaling in the pheromone response pathway of Saccharomyces cerevisiae. Mol Cell Biol. 1989 Sep;9(9):3720–3726. doi: 10.1128/mcb.9.9.3720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blumer K. J., Thorner J. Beta and gamma subunits of a yeast guanine nucleotide-binding protein are not essential for membrane association of the alpha subunit but are required for receptor coupling. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4363–4367. doi: 10.1073/pnas.87.11.4363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bond R. A., Leff P., Johnson T. D., Milano C. A., Rockman H. A., McMinn T. R., Apparsundaram S., Hyek M. F., Kenakin T. P., Allen L. F. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the beta 2-adrenoceptor. Nature. 1995 Mar 16;374(6519):272–276. doi: 10.1038/374272a0. [DOI] [PubMed] [Google Scholar]
  8. Boone C., Davis N. G., Sprague G. F., Jr Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive phenotype. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9921–9925. doi: 10.1073/pnas.90.21.9921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen Q., Konopka J. B. Regulation of the G-protein-coupled alpha-factor pheromone receptor by phosphorylation. Mol Cell Biol. 1996 Jan;16(1):247–257. doi: 10.1128/mcb.16.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chvatchko Y., Howald I., Riezman H. Two yeast mutants defective in endocytosis are defective in pheromone response. Cell. 1986 Aug 1;46(3):355–364. doi: 10.1016/0092-8674(86)90656-2. [DOI] [PubMed] [Google Scholar]
  11. Clark C. D., Palzkill T., Botstein D. Systematic mutagenesis of the yeast mating pheromone receptor third intracellular loop. J Biol Chem. 1994 Mar 25;269(12):8831–8841. [PubMed] [Google Scholar]
  12. Dietzel C., Kurjan J. The yeast SCG1 gene: a G alpha-like protein implicated in the a- and alpha-factor response pathway. Cell. 1987 Sep 25;50(7):1001–1010. doi: 10.1016/0092-8674(87)90166-8. [DOI] [PubMed] [Google Scholar]
  13. Dohlman H. G., Thorner J., Caron M. G., Lefkowitz R. J. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem. 1991;60:653–688. doi: 10.1146/annurev.bi.60.070191.003253. [DOI] [PubMed] [Google Scholar]
  14. Eriotou-Bargiota E., Xue C. B., Naider F., Becker J. M. Antagonistic and synergistic peptide analogues of the tridecapeptide mating pheromone of Saccharomyces cerevisiae. Biochemistry. 1992 Jan 21;31(2):551–557. doi: 10.1021/bi00117a036. [DOI] [PubMed] [Google Scholar]
  15. Fahmy K., Siebert F., Sakmar T. P. Photoactivated state of rhodopsin and how it can form. Biophys Chem. 1995 Sep-Oct;56(1-2):171–181. doi: 10.1016/0301-4622(95)00030-2. [DOI] [PubMed] [Google Scholar]
  16. Gether U., Lin S., Kobilka B. K. Fluorescent labeling of purified beta 2 adrenergic receptor. Evidence for ligand-specific conformational changes. J Biol Chem. 1995 Nov 24;270(47):28268–28275. doi: 10.1074/jbc.270.47.28268. [DOI] [PubMed] [Google Scholar]
  17. Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hartwell L. H. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J Cell Biol. 1980 Jun;85(3):811–822. doi: 10.1083/jcb.85.3.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jackson C. L., Konopka J. B., Hartwell L. H. S. cerevisiae alpha pheromone receptors activate a novel signal transduction pathway for mating partner discrimination. Cell. 1991 Oct 18;67(2):389–402. doi: 10.1016/0092-8674(91)90190-a. [DOI] [PubMed] [Google Scholar]
  20. Jenness D. D., Goldman B. S., Hartwell L. H. Saccharomyces cerevisiae mutants unresponsive to alpha-factor pheromone: alpha-factor binding and extragenic suppression. Mol Cell Biol. 1987 Apr;7(4):1311–1319. doi: 10.1128/mcb.7.4.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jenness D. D., Spatrick P. Down regulation of the alpha-factor pheromone receptor in S. cerevisiae. Cell. 1986 Aug 1;46(3):345–353. doi: 10.1016/0092-8674(86)90655-0. [DOI] [PubMed] [Google Scholar]
  22. Konopka J. B. AFR1 acts in conjunction with the alpha-factor receptor to promote morphogenesis and adaptation. Mol Cell Biol. 1993 Nov;13(11):6876–6888. doi: 10.1128/mcb.13.11.6876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Konopka J. B., Jenness D. D., Hartwell L. H. The C-terminus of the S. cerevisiae alpha-pheromone receptor mediates an adaptive response to pheromone. Cell. 1988 Aug 26;54(5):609–620. doi: 10.1016/s0092-8674(88)80005-9. [DOI] [PubMed] [Google Scholar]
  24. König B., Arendt A., McDowell J. H., Kahlert M., Hargrave P. A., Hofmann K. P. Three cytoplasmic loops of rhodopsin interact with transducin. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6878–6882. doi: 10.1073/pnas.86.18.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Luo X., Zhang D., Weinstein H. Ligand-induced domain motion in the activation mechanism of a G-protein-coupled receptor. Protein Eng. 1994 Dec;7(12):1441–1448. doi: 10.1093/protein/7.12.1441. [DOI] [PubMed] [Google Scholar]
  26. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  27. Marsh L., Neiman A. M., Herskowitz I. Signal transduction during pheromone response in yeast. Annu Rev Cell Biol. 1991;7:699–728. doi: 10.1146/annurev.cb.07.110191.003411. [DOI] [PubMed] [Google Scholar]
  28. Marsh L. Substitutions in the hydrophobic core of the alpha-factor receptor of Saccharomyces cerevisiae permit response to Saccharomyces kluyveri alpha-factor and to antagonist. Mol Cell Biol. 1992 Sep;12(9):3959–3966. doi: 10.1128/mcb.12.9.3959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Naider F., Becker J. M. Structure-activity relationships of the yeast alpha-factor. CRC Crit Rev Biochem. 1986;21(3):225–248. doi: 10.3109/10409238609113612. [DOI] [PubMed] [Google Scholar]
  30. Pellicone C., Nullans G., Cook N. J., Virmaux N. Light-induced conformational changes in the extradiscal regions of bovine rhodopsin. Biochem Biophys Res Commun. 1985 Mar 29;127(3):816–821. doi: 10.1016/s0006-291x(85)80016-4. [DOI] [PubMed] [Google Scholar]
  31. Raths S. K., Naider F., Becker J. M. Peptide analogues compete with the binding of alpha-factor to its receptor in Saccharomyces cerevisiae. J Biol Chem. 1988 Nov 25;263(33):17333–17341. [PubMed] [Google Scholar]
  32. Ren Q., Kurose H., Lefkowitz R. J., Cotecchia S. Constitutively active mutants of the alpha 2-adrenergic receptor. J Biol Chem. 1993 Aug 5;268(22):16483–16487. [PubMed] [Google Scholar]
  33. Reneke J. E., Blumer K. J., Courchesne W. E., Thorner J. The carboxy-terminal segment of the yeast alpha-factor receptor is a regulatory domain. Cell. 1988 Oct 21;55(2):221–234. doi: 10.1016/0092-8674(88)90045-1. [DOI] [PubMed] [Google Scholar]
  34. Rohrer J., Bénédetti H., Zanolari B., Riezman H. Identification of a novel sequence mediating regulated endocytosis of the G protein-coupled alpha-pheromone receptor in yeast. Mol Biol Cell. 1993 May;4(5):511–521. doi: 10.1091/mbc.4.5.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Samama P., Cotecchia S., Costa T., Lefkowitz R. J. A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem. 1993 Mar 5;268(7):4625–4636. [PubMed] [Google Scholar]
  36. Schachman H. K. Can a simple model account for the allosteric transition of aspartate transcarbamoylase? J Biol Chem. 1988 Dec 15;263(35):18583–18586. [PubMed] [Google Scholar]
  37. Schandel K. A., Jenness D. D. Direct evidence for ligand-induced internalization of the yeast alpha-factor pheromone receptor. Mol Cell Biol. 1994 Nov;14(11):7245–7255. doi: 10.1128/mcb.14.11.7245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schreiber R. E., Prossnitz E. R., Ye R. D., Cochrane C. G., Bokoch G. M. Domains of the human neutrophil N-formyl peptide receptor involved in G protein coupling. Mapping with receptor-derived peptides. J Biol Chem. 1994 Jan 7;269(1):326–331. [PubMed] [Google Scholar]
  39. Schultz J., Ferguson B., Sprague G. F., Jr Signal transduction and growth control in yeast. Curr Opin Genet Dev. 1995 Feb;5(1):31–37. doi: 10.1016/s0959-437x(95)90050-0. [DOI] [PubMed] [Google Scholar]
  40. Schumacher M. A., Dixon M. M., Kluger R., Jones R. T., Brennan R. G. Allosteric transition intermediates modelled by crosslinked haemoglobins. Nature. 1995 May 4;375(6526):84–87. doi: 10.1038/375084a0. [DOI] [PubMed] [Google Scholar]
  41. Segall J. E. Polarization of yeast cells in spatial gradients of alpha mating factor. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8332–8336. doi: 10.1073/pnas.90.18.8332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shenbagamurthi P., Baffi R., Khan S. A., Lipke P., Pousman C., Becker J. M., Naider F. Structure-activity relationships in the dodecapeptide alpha factor of Saccharomyces cerevisiae. Biochemistry. 1983 Mar 1;22(5):1298–1304. doi: 10.1021/bi00274a047. [DOI] [PubMed] [Google Scholar]
  43. Stefan C. J., Blumer K. J. The third cytoplasmic loop of a yeast G-protein-coupled receptor controls pathway activation, ligand discrimination, and receptor internalization. Mol Cell Biol. 1994 May;14(5):3339–3349. doi: 10.1128/mcb.14.5.3339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Strader C. D., Fong T. M., Graziano M. P., Tota M. R. The family of G-protein-coupled receptors. FASEB J. 1995 Jun;9(9):745–754. [PubMed] [Google Scholar]
  45. Strader C. D., Fong T. M., Tota M. R., Underwood D., Dixon R. A. Structure and function of G protein-coupled receptors. Annu Rev Biochem. 1994;63:101–132. doi: 10.1146/annurev.bi.63.070194.000533. [DOI] [PubMed] [Google Scholar]
  46. Taylor J. M., Neubig R. R. Peptides as probes for G protein signal transduction. Cell Signal. 1994 Nov;6(8):841–849. doi: 10.1016/0898-6568(94)90017-5. [DOI] [PubMed] [Google Scholar]
  47. Weiner J. L., Guttierez-Steil C., Blumer K. J. Disruption of receptor-G protein coupling in yeast promotes the function of an SST2-dependent adaptation pathway. J Biol Chem. 1993 Apr 15;268(11):8070–8077. [PubMed] [Google Scholar]
  48. Weiss E. R., Kelleher D. J., Johnson G. L. Mapping sites of interaction between rhodopsin and transducin using rhodopsin antipeptide antibodies. J Biol Chem. 1988 May 5;263(13):6150–6154. [PubMed] [Google Scholar]
  49. Zanolari B., Raths S., Singer-Krüger B., Riezman H. Yeast pheromone receptor endocytosis and hyperphosphorylation are independent of G protein-mediated signal transduction. Cell. 1992 Nov 27;71(5):755–763. doi: 10.1016/0092-8674(92)90552-n. [DOI] [PubMed] [Google Scholar]
  50. Zhang D., Weinstein H. Signal transduction by a 5-HT2 receptor: a mechanistic hypothesis from molecular dynamics simulations of the three-dimensional model of the receptor complexed to ligands. J Med Chem. 1993 Apr 2;36(7):934–938. doi: 10.1021/jm00059a021. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES