Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Sep;16(9):4842–4851. doi: 10.1128/mcb.16.9.4842

HOXB7 constitutively activates basic fibroblast growth factor in melanomas.

A Caré 1, A Silvani 1, E Meccia 1, G Mattia 1, A Stoppacciaro 1, G Parmiani 1, C Peschle 1, M P Colombo 1
PMCID: PMC231486  PMID: 8756643

Abstract

Homeobox (HOX) genes control axial specification during mammalian development and also regulate skin morphogenesis. Although selected HOX genes are variably expressed in leukemias and kidney and colon cancer cell lines, their relationship with the neoplastic phenotype remains unclear. In both normal development and neoplastic transformation, HOX target genes are largely unknown. We investigated the expression and function of HOXB cluster genes in human melanoma. The HOXB7 gene was constitutively expressed in all 25 melanoma cell lines and analyzed under both normal and serum-starved conditions, as well as in in vivo primary and metastatic melanoma cells; conversely, HOXB7 was expressed in proliferating but not quiescent normal melanocytes. Treatment of melanoma cell lines with antisense oligomers targeting HOXB7 mRNA markedly inhibited cell proliferation and specifically abolished expression of basic fibroblast growth factor (bFGF) mRNA. Band shift and cotransfection experiments showed that HOXB7 directly transactivates the hFGF gene through one out of five putative homeodomain binding sites present in its promoter. These novel findings indicate a key role for constitutive HOXB7 expression in melanoma cell proliferation via bFGF. The results also raise the possibility that growth factor genes are critical HOX target genes in other developmental and/or neoplastic cell systems.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adema G. J., de Boer A. J., van 't Hullenaar R., Denijn M., Ruiter D. J., Vogel A. M., Figdor C. G. Melanocyte lineage-specific antigens recognized by monoclonal antibodies NKI-beteb, HMB-50, and HMB-45 are encoded by a single cDNA. Am J Pathol. 1993 Dec;143(6):1579–1585. [PMC free article] [PubMed] [Google Scholar]
  2. Anichini A., Mortarini R., Fossati G., Parmiani G. Phenotypic profile of clones from early cultures of human metastatic melanomas and its modulation by recombinant interferon gamma. Int J Cancer. 1986 Oct 15;38(4):505–511. doi: 10.1002/ijc.2910380409. [DOI] [PubMed] [Google Scholar]
  3. Asselineau D., Bernard B. A., Bailly C., Darmon M. Retinoic acid improves epidermal morphogenesis. Dev Biol. 1989 Jun;133(2):322–335. doi: 10.1016/0012-1606(89)90037-7. [DOI] [PubMed] [Google Scholar]
  4. Balling R., Mutter G., Gruss P., Kessel M. Craniofacial abnormalities induced by ectopic expression of the homeobox gene Hox-1.1 in transgenic mice. Cell. 1989 Jul 28;58(2):337–347. doi: 10.1016/0092-8674(89)90848-9. [DOI] [PubMed] [Google Scholar]
  5. Beck Y., Oren R., Amit B., Levanon A., Gorecki M., Hartman J. R. Human Mn superoxide dismutase cDNA sequence. Nucleic Acids Res. 1987 Nov 11;15(21):9076–9076. doi: 10.1093/nar/15.21.9076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Becker D., Meier C. B., Herlyn M. Proliferation of human malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against basic fibroblast growth factor. EMBO J. 1989 Dec 1;8(12):3685–3691. doi: 10.1002/j.1460-2075.1989.tb08543.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bieberich C. J., Ruddle F. H., Stenn K. S. Differential expression of the Hox 3.1 gene in adult mouse skin. Ann N Y Acad Sci. 1991 Dec 26;642:346–354. doi: 10.1111/j.1749-6632.1991.tb24400.x. [DOI] [PubMed] [Google Scholar]
  8. Blatt C., Lotem J., Sachs L. Inhibition of specific pathways of myeloid cell differentiation by an activated Hox-2.4 homeobox gene. Cell Growth Differ. 1992 Oct;3(10):671–676. [PubMed] [Google Scholar]
  9. Bordoni R., Fine R., Murray D., Richmond A. Characterization of the role of melanoma growth stimulatory activity (MGSA) in the growth of normal melanocytes, nevocytes, and malignant melanocytes. J Cell Biochem. 1990 Dec;44(4):207–219. doi: 10.1002/jcb.240440403. [DOI] [PubMed] [Google Scholar]
  10. Carè A., Mattia G., Montesoro E., Parolini I., Russo G., Colombo M. P., Peschle C. c-fes expression in ontogenetic development and hematopoietic differentiation. Oncogene. 1994 Mar;9(3):739–747. [PubMed] [Google Scholar]
  11. Carè A., Testa U., Bassani A., Tritarelli E., Montesoro E., Samoggia P., Cianetti L., Peschle C. Coordinate expression and proliferative role of HOXB genes in activated adult T lymphocytes. Mol Cell Biol. 1994 Jul;14(7):4872–4877. doi: 10.1128/mcb.14.7.4872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cillo C., Barba P., Freschi G., Bucciarelli G., Magli M. C., Boncinelli E. HOX gene expression in normal and neoplastic human kidney. Int J Cancer. 1992 Jul 30;51(6):892–897. doi: 10.1002/ijc.2910510610. [DOI] [PubMed] [Google Scholar]
  13. Colombo M. P., Maccalli C., Mattei S., Melani C., Radrizzani M., Parmiani G. Expression of cytokine genes, including IL-6, in human malignant melanoma cell lines. Melanoma Res. 1992 Sep;2(3):181–189. doi: 10.1097/00008390-199209000-00006. [DOI] [PubMed] [Google Scholar]
  14. Condie B. G., Capecchi M. R. Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature. 1994 Jul 28;370(6487):304–307. doi: 10.1038/370304a0. [DOI] [PubMed] [Google Scholar]
  15. De Vita G., Barba P., Odartchenko N., Givel J. C., Freschi G., Bucciarelli G., Magli M. C., Boncinelli E., Cillo C. Expression of homeobox-containing genes in primary and metastatic colorectal cancer. Eur J Cancer. 1993;29A(6):887–893. doi: 10.1016/s0959-8049(05)80432-0. [DOI] [PubMed] [Google Scholar]
  16. Dedera D. A., Waller E. K., LeBrun D. P., Sen-Majumdar A., Stevens M. E., Barsh G. S., Cleary M. L. Chimeric homeobox gene E2A-PBX1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice. Cell. 1993 Sep 10;74(5):833–843. doi: 10.1016/0092-8674(93)90463-z. [DOI] [PubMed] [Google Scholar]
  17. Deguchi Y., Kehrl J. H. High level expression of the homeobox gene HB24 in a human T-cell line confers the ability to form tumors in nude mice. Cancer Res. 1993 Jan 15;53(2):373–377. [PubMed] [Google Scholar]
  18. Deguchi Y., Moroney J. F., Kehrl J. H. Expression of the HOX-2.3 homeobox gene in human lymphocytes and lymphoid tissues. Blood. 1991 Jul 15;78(2):445–450. [PubMed] [Google Scholar]
  19. Deschamps J., Meijlink F. Mammalian homeobox genes in normal development and neoplasia. Crit Rev Oncog. 1992;3(1-2):117–173. [PubMed] [Google Scholar]
  20. Edelman G. M., Jones F. S. Outside and downstream of the homeobox. J Biol Chem. 1993 Oct 5;268(28):20683–20686. [PubMed] [Google Scholar]
  21. Flamme I., Risau W. Induction of vasculogenesis and hematopoiesis in vitro. Development. 1992 Oct;116(2):435–439. doi: 10.1242/dev.116.2.435. [DOI] [PubMed] [Google Scholar]
  22. Florkiewicz R. Z., Shibata F., Barankiewicz T., Baird A., Gonzalez A. M., Florkiewicz E., Shah N. Basic fibroblast growth factor gene expression. Ann N Y Acad Sci. 1991;638:109–126. doi: 10.1111/j.1749-6632.1991.tb49022.x. [DOI] [PubMed] [Google Scholar]
  23. Giampaolo A., Sterpetti P., Bulgarini D., Samoggia P., Pelosi E., Valtieri M., Peschle C. Key functional role and lineage-specific expression of selected HOXB genes in purified hematopoietic progenitor differentiation. Blood. 1994 Dec 1;84(11):3637–3647. [PubMed] [Google Scholar]
  24. Giard D. J., Aaronson S. A., Todaro G. J., Arnstein P., Kersey J. H., Dosik H., Parks W. P. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973 Nov;51(5):1417–1423. doi: 10.1093/jnci/51.5.1417. [DOI] [PubMed] [Google Scholar]
  25. Goomer R. S., Holst B. D., Wood I. C., Jones F. S., Edelman G. M. Regulation in vitro of an L-CAM enhancer by homeobox genes HoxD9 and HNF-1. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):7985–7989. doi: 10.1073/pnas.91.17.7985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Halaban R., Kwon B. S., Ghosh S., Delli Bovi P., Baird A. bFGF as an autocrine growth factor for human melanomas. Oncogene Res. 1988 Sep;3(2):177–186. [PubMed] [Google Scholar]
  27. Hatano M., Roberts C. W., Minden M., Crist W. M., Korsmeyer S. J. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science. 1991 Jul 5;253(5015):79–82. doi: 10.1126/science.1676542. [DOI] [PubMed] [Google Scholar]
  28. Herlyn M., Guerry D., Koprowski H. Recombinant gamma-interferon induces changes in expression and shedding of antigens associated with normal human melanocytes, nevus cells, and primary and metastatic melanoma cells. J Immunol. 1985 Jun;134(6):4226–4230. [PubMed] [Google Scholar]
  29. Herlyn M., Thurin J., Balaban G., Bennicelli J. L., Herlyn D., Elder D. E., Bondi E., Guerry D., Nowell P., Clark W. H. Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res. 1985 Nov;45(11 Pt 2):5670–5676. [PubMed] [Google Scholar]
  30. Jones F. S., Chalepakis G., Gruss P., Edelman G. M. Activation of the cytotactin promoter by the homeobox-containing gene Evx-1. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2091–2095. doi: 10.1073/pnas.89.6.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jones F. S., Holst B. D., Minowa O., De Robertis E. M., Edelman G. M. Binding and transcriptional activation of the promoter for the neural cell adhesion molecule by HoxC6 (Hox-3.3). Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6557–6561. doi: 10.1073/pnas.90.14.6557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jones F. S., Prediger E. A., Bittner D. A., De Robertis E. M., Edelman G. M. Cell adhesion molecules as targets for Hox genes: neural cell adhesion molecule promoter activity is modulated by cotransfection with Hox-2.5 and -2.4. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2086–2090. doi: 10.1073/pnas.89.6.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kalionis B., O'Farrell P. H. A universal target sequence is bound in vitro by diverse homeodomains. Mech Dev. 1993 Sep;43(1):57–70. doi: 10.1016/0925-4773(93)90023-q. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kerbel R. S. Expression of multi-cytokine resistance and multi-growth factor independence in advanced stage metastatic cancer. Malignant melanoma as a paradigm. Am J Pathol. 1992 Sep;141(3):519–524. [PMC free article] [PubMed] [Google Scholar]
  35. Kerbel R. S., Man M. S., Dexter D. A model of human cancer metastasis: extensive spontaneous and artificial metastasis of a human pigmented melanoma and derived variant sublines in nude mice. J Natl Cancer Inst. 1984 Jan;72(1):93–108. doi: 10.1093/jnci/72.1.93. [DOI] [PubMed] [Google Scholar]
  36. Kozlowski J. M., Fidler I. J., Campbell D., Xu Z. L., Kaighn M. E., Hart I. R. Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res. 1984 Aug;44(8):3522–3529. [PubMed] [Google Scholar]
  37. Krumlauf R. Hox genes in vertebrate development. Cell. 1994 Jul 29;78(2):191–201. doi: 10.1016/0092-8674(94)90290-9. [DOI] [PubMed] [Google Scholar]
  38. Lawrence H. J., Largman C. Homeobox genes in normal hematopoiesis and leukemia. Blood. 1992 Nov 15;80(10):2445–2453. [PubMed] [Google Scholar]
  39. MacGregor G. R., Caskey C. T. Construction of plasmids that express E. coli beta-galactosidase in mammalian cells. Nucleic Acids Res. 1989 Mar 25;17(6):2365–2365. doi: 10.1093/nar/17.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Magli M. C., Barba P., Celetti A., De Vita G., Cillo C., Boncinelli E. Coordinate regulation of HOX genes in human hematopoietic cells. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6348–6352. doi: 10.1073/pnas.88.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mathews C. H., Detmer K., Lawrence H. J., Largman C. Expression of the Hox 2.2 homeobox gene in murine embryonic epidermis. Differentiation. 1993 Jan;52(2):177–184. doi: 10.1111/j.1432-0436.1993.tb00628.x. [DOI] [PubMed] [Google Scholar]
  42. Mattei S., Colombo M. P., Melani C., Silvani A., Parmiani G., Herlyn M. Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer. 1994 Mar 15;56(6):853–857. doi: 10.1002/ijc.2910560617. [DOI] [PubMed] [Google Scholar]
  43. Maulbecker C. C., Gruss P. The oncogenic potential of deregulated homeobox genes. Cell Growth Differ. 1993 May;4(5):431–441. [PubMed] [Google Scholar]
  44. Mavilio F. Regulation of vertebrate homeobox-containing genes by morphogens. Eur J Biochem. 1993 Mar 1;212(2):273–288. doi: 10.1111/j.1432-1033.1993.tb17660.x. [DOI] [PubMed] [Google Scholar]
  45. Perkins A. C., Cory S. Conditional immortalization of mouse myelomonocytic, megakaryocytic and mast cell progenitors by the Hox-2.4 homeobox gene. EMBO J. 1993 Oct;12(10):3835–3846. doi: 10.1002/j.1460-2075.1993.tb06062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Perkins A., Kongsuwan K., Visvader J., Adams J. M., Cory S. Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8398–8402. doi: 10.1073/pnas.87.21.8398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Petrini M., Quaranta M. T., Testa U., Samoggia P., Tritarelli E., Carè A., Cianetti L., Valtieri M., Barletta C., Peschle C. Expression of selected human HOX-2 genes in B/T acute lymphoid leukemia and interleukin-2/interleukin-1 beta-stimulated natural killer lymphocytes. Blood. 1992 Jul 1;80(1):185–193. [PubMed] [Google Scholar]
  48. Pollock R. A., Sreenath T., Ngo L., Bieberich C. J. Gain of function mutations for paralogous Hox genes: implications for the evolution of Hox gene function. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4492–4496. doi: 10.1073/pnas.92.10.4492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sauvageau G., Lansdorp P. M., Eaves C. J., Hogge D. E., Dragowska W. H., Reid D. S., Largman C., Lawrence H. J., Humphries R. K. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12223–12227. doi: 10.1073/pnas.91.25.12223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schadendorf D., Möller A., Algermissen B., Worm M., Sticherling M., Czarnetzki B. M. IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol. 1993 Sep 1;151(5):2667–2675. [PubMed] [Google Scholar]
  51. Schweigerer L., Neufeld G., Mergia A., Abraham J. A., Fiddes J. C., Gospodarowicz D. Basic fibroblast growth factor in human rhabdomyosarcoma cells: implications for the proliferation and neovascularization of myoblast-derived tumors. Proc Natl Acad Sci U S A. 1987 Feb;84(3):842–846. doi: 10.1073/pnas.84.3.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Scott G. A., Goldsmith L. A. Homeobox genes and skin development: a review. J Invest Dermatol. 1993 Jul;101(1):3–8. doi: 10.1111/1523-1747.ep12358258. [DOI] [PubMed] [Google Scholar]
  53. Scott M. P. Vertebrate homeobox gene nomenclature. Cell. 1992 Nov 13;71(4):551–553. doi: 10.1016/0092-8674(92)90588-4. [DOI] [PubMed] [Google Scholar]
  54. Simeone A., Mavilio F., Acampora D., Giampaolo A., Faiella A., Zappavigna V., D'Esposito M., Pannese M., Russo G., Boncinelli E. Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4914–4918. doi: 10.1073/pnas.84.14.4914. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES